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1. ფუნქციები

სიმრავლეები

N+-ით აღვნიშნოთ ნატურალურ რიცხვთა სიმრავლე,
N-ით აღვნიშნოთ N+ ∪ 0,
Z-ით აღვნიშნოთ მთელ რიცხვთა სიმრავლე
Q-ით აღვნიშნოთ რაციონალურ რიცხვთა სიმრავლე
R-ით აღვნიშნოთ ნამდვილ რიცხვთა სიმრავლე

გავიხსენოთ ინტერვალისა და სეგმენტის, ნახევარინტერვალისა და ნახევარსეგმენ-
ტის განმარტებები:

ნახ. 1.1

სიმრავლეების აღნიშვნისთვის გამოვიყენებთ ლათინურ ასოებს A,B,C, . . . . ისეთ
სიმრავლეს, რომელიც არცერთ ელემენტს არ შეიცავს ცარიელი სიმრავლე ეწოდება
და აღინიშნება ∅ სიმბოლოთი.

თუ x ელემენტი ეკუთვნის A სიმრავლეს, მაშინ გამოვიყენებთ აღნიშვნას x ∈ A,
წინააღმდეგ შემთხვევაში დავწერთ x /∈ A.

ვიტყვით, რომ A სიმრავლე შედის B-ში ან A არის B-ს ქვესიმრავლე, თუ A-ს ყოვე-
ლი ელემენტი ეკუთვნის B-ს, და ჩავწერთ A ⊂ B.

სიმრავლეს ეწოდება სასრული, თუ იგი სასრულ რაოდენობა ელემენტებს შეიცავს
და ამ შემთხვევაში სიმრავლის გადმოსაცემად უბრალოდ ჩამოვთვლით მის ყველა
ელემენტს.
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ორი სიმრავლის დეკარტული ნამრავლი არის ყველა ისეთ დალაგებული წყვილის
სიმრავლე, რომლის პირველი ელემენტი პირველი სიმრავლიდანაა, ხოლო მეორე ელე-
მენტი — მეორედან. A×B = {(x, y) | x ∈ A, y ∈ B} .

ორი A და B სიმრავლის გაერთიანება აღი-
ნიშნება A ∪ B და ეს არის ისეთი სიმრავ-
ლე, რომლის ელემენტები ეკუთვნიან A-ს
ან B-ს.

ორი A და B სიმრავლის თანაკვეთა აღი-
ნიშნება A ∩ B და ეს არის ისეთი სიმრავ-
ლე, რომლის ელემენტები ეკუთვნიან A-ს
და B-ს ერთდროულად.

ორი A და B სიმრავლის სხვაობა აღინიშ-
ნება A \ B, და ეს არის ისეთი სიმრავლე,
რომლის ელემენტები ეკუთვნიან A-ს და
არ ეკუთვნიან B-ს ერთდროულად.

ვთქვათ

A = {1, 2, 3, 4} , B = {2, 4} , C = {−4,−2, 0, 6, 10} და D = {4, 6, 8, 10, 12} .

მაშინ ცხადია, რომ 2 ∈ A და 8 /∈ A. ასევე სამართლიანია, რომ B ⊂ A და C ̸⊂ D.
მეორე მხრივ, ადგილი აქვს შემდეგ სიმრავლურ ტოლობებს:

A ∪B = {1, 2, 3, 4, 5} , B ∪D = {2, 4, 6, 8, 10, 12} ,

B ∩ C = ∅, A ∩B = {2, 4} , B ∩D = {4} ,

A \B = {1, 3} , B \ A = ∅, C \D = {−4,−2, 0} , D \ C = {4, 8, 12} ,

A×B = {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4), (4, 2), (4, 4)} .

მართხკუთხა კოორდინატთა სისტემა
რიცხვითი ღერძის ყოველ წერტილს ერთადერთი ნამდვილი რიცხვი და ყოველ ნამ-

დვილ რიცხვს ერთადერთი წერტილი შეესაბამება რიცხვით ღერძზე. ეს ნიშნავს, რომ
არსებობს ურთიერთცალსახა თანადობა რიცხვითი ღერძის წერტილებსა და ნამდვილ
რიცხვთა სიმრავლის ელემენტებს შორის.

მართკუთხა კოორდინატთა სისტემის მისაღებად ვირჩევთ ორ ერთმანეთის პერპენ-
დიკულარულ ნამდვილ რიცხვით ღერძს - ჰორიზონტალურსა და ვერტიკალურს, რომ-
ლებიც იკვეთებიან მათ სათავეებზე, როგორც მითითებულია ნახაზზე. ჩვეულებრივ,



დადებითი მიმართულებები ზევით და მარჯვნივაა. ჰორიზონტალურ ღერძს ეწოდება
აბსცისთა ანუ OX-ღერძი, ვერტიკალურ ღერძს - ორდინატთა ანუ OY -ღერძი. ორი-
ვეს ერთად საკოორდინატო ღერძები ჰქვია. საკოორდინატო ღერძები სიბრტყეს ოთხ
ნაწილად ყოფენ, ანუ კვადრანტებად, რომლებიც დანომრილია საათის ისრის საწინა-
აღმდეგო მიმართულებით (იხ. ნახაზი 1.1).

ნახ. 1.1: მართკუთხა კოორდინატთა სისტემა

ახლა დავუკავშიროთ კოორდინატები თითოეულ წერტილს სიბრტყეზე. ვთქვათ, მო-
ცემულია ნებისმიერი P წერტილი სიბრტყეზე. გავავლოთ ამ წერტილზე ჰორიზონტა-
ლური და ვერტიკალური წრფეები (იხ. ნახ 1.1). ვერტიკალური წრფე გადაკვეთს ჰორი-
ზონტალურ ღერძს a კოორდინატის მქონე წერტილში, ხოლო ვერტიკალურ ღერძს -b
კოორდინატის მქონე წერტილში. ეს ორი რიცხვი, ჩაწერილი, დალაგებული (a, b) წყვი-
ლის სახით წარმოადგენს P წერტილის კოორდინატებს. პირველ კოორდინატს, a-ს,
ეწოდება P წერტილის აბსცისა, ხოლო მეორე კოორდინატს, b- ს P წერტილის ორდი-
ნატა. ნახაზზე Q წერტილის აბსცისა არის -5, ხოლო ორდინატა არის 5. (0, 0) წერტილს
კოორდინატთა სათავე ეწოდება.

პროცესი, რომელიც ახლა აღვწერეთ, გვიჩვენებს, რომ სიბრტყის ყოველ P წერ-
ტილს შეესაბამება ნამდვილ რიცხვთა ერთადერთი დალაგებულ წყვილი (a, b) . უკუპ-
როცესით შეგვიძლია განვსაზღვროთ ერთადერთი P წერტილი სიბრტყეზე, რომლის
აბცისა და ორდინატა შესაბამისად იქნება a და B. ამრიგად, არსებობს ურთიერთცალ-
სახა შესაბამისობა სიბრტყის წერტილებსა და ნამდვილ რიცხვთა დალაგებულ წყვილე-
ბის სიმრავლის ელემენტებს შორის. ამ დებულებას ხშირად ანალიზური გეომეტრიის
ფუნდამენტურ თეორემას უწოდებენ.

ცხადია, რომ მართკუთხა კოორდინატთა სისტემა წარმოადგენს ნამდვილ რიცხვთა
ღერძის დეკარტულ ნამრავლს თავის თავთან.



ფუნქციის მოცემის წესები და მისი გრაფიკი

განმარტება 1.1. ვთქვათ X და Y არაცარიელი სიმრავლეებია. თუ არსებობს წესი f ,
რომლის მიხედვით X სიმრავლის ყოველ x ელემენტს შეესაბამება Y სიმრავლის მხო-
ლოდ ერთი y ელემენტი, ვიტყვით, რომ მოცემულია ფუნქცია და ვწერთ f : X → Y.
y = f (x) x– ს დამოუკიდებელ ცვლადს, ანუ არგუმენტს უწოდებენ, y–ს კი დამოკი-
დებულ ცვლადს, ანუ ანასახს. X სიმრავლეს ეწოდება განსაზღვრის არე, ხოლო Y
სიმრავლეს - მნიშვნელობათა არე.

ნახ. 1.2

ნახაზ 1.3-ის 1 და 2 ცხრილები განსაზღვრავს ფუნქციებს, რადგან განსაზღვრის
არის ყოველ ელემენტს შეესაბამება მნიშვნელობათა არიდან ზუსტად ერთი მნიშვნე-
ლობა. ცხრილი 3 არ განსაზღვრავს ფუნქციას, რადგან განსაზღვრის არის თუნდაც ერთ
ელემენტს შეესაბამება ერთზე მეტი ელემენტი მნიშვნელობათა არიდან (მაგალითად,
9-ს შეესაბამება −3 და 3, ორივე კვადრატული ფესვია 9-დან).

ნახ. 1.3

განმარტება 1.2. განტოლებით განსაზღვრული ფუნქცია. თუ ორი ცვლადის განტო-
ლებაში დამოუკიდებელი ცვლადის ყოველ მნიშვნელობას შეესაბამება დამოკიდებული
ცვლადის ზუსტად ერთი მნიშვნელობა, მაშინ განტოლება განსაზღვრავს ფუნქციას.

თუ დამოუკიდებელი ცვლადის რაიმე მნიშვნელობისათვის მივიღებთ დამოკიდებუ-
ლი ცვლადის ერთზე მეტ მნიშვნელობას, მაშინ განტოლება არ განსაზღვრავს ფუნქცი-
ას.



განმარტება 1.3. ურთიერთცალსახა ფუნქციები. ფუნქციები, რომლებიც არგუმენ-
ტის განსხვავებულ მნიშვნელობებს განსაზღვრის არიდან უთანადებს განსხვავებულ
მნიშვნელობებს მნიშვნელობათა არეში, ეწოდებათ ურთიერთცალსახა ფუნქციები.

ცხრილი 1 ურთიერთცალსახა ფუნქციას განსაზღვრავს, რადგან ყოველ განსხვა-
ვებულ ელემენტს განსაზღვრის არიდან შეესაბამება განსხვავებული მნიშვნელობა,
ცხრილი 2 ფუნქციის მაგალითია, რომელიც არაა ურთიერცალსახა, რადგან მაგალი-
თად განსაზღვრის არის ორი განსხვავებული ელემენტის −2-ისა და 1-ის მნიშვნელო-
ბები არის ერთიდაიგივე რიცხვი 4, ხოლო ცხრილი სამი საერთოდ არ წარმოადგენს
ფუნქციას, რადგან მაგალითად, განსაზღვრის არის ელემენტ 1-ს შეესაბამება ორი მნიშ-
ვნელობა 1 და −1.

თუ f და g ფუნქციებია, მაშინ ფუნქციათა ჯამი (f + g) , სხვაობა (f − g) , ნამრავლი
(f · g) და განაყოფი

(
f
g

)
განიმარტება შემდეგნაირად

(f + g) (x) = f (x) + g (x) , (f − g) (x) = f (x)− g (x) ,

(f · g) (x) = f (x) · g (x) ,
(
f

g

)
(x) =

f (x)

g (x)
, g (x) ̸= 0.

ფუნქციათა ჯამის, სხვაობის, ნამრავლისა და განაყოფის განსაზღვრის არე წარმოად-
გენს f და g ფუნქციის განსაზღვრის არის თანაკვეთას.

განმარტება 1.4. ვთქვათ, მოცემულია f(x) ფუნქცია. წყვილების (x, f(x)) სიმრავლეს
ფუნქციის გრაფიკი ეწოდება.

თეორემა 1.5. ვერტიკალური წრფის ტესტი ფუნქციისათვის. განტოლება განსა-
ზღვრავს ფუნქციას, თუ საკოორდინატო სისტემაში ყოველი ვერტიკალური წრფე კვეთს
განტოლების გრაფიკს არაუმეტეს ერთ წერტილში.

ნახ. 1.4: (A) განტოლებით მოცემული წირი ფუნქციის გრაფიკია, ხოლო (B)-თი კი არა

ფუნქციათა კომპოზიცია, შექცეული ფუნქცია

განმარტება 1.6. ვთქვათ, მოცემულია ორი ფუნქცია f და g. f და g ფუნქციების კომ-
პოზიცია აღინიშნება f ◦ g (იკითხება g-ის კომპოზიცია f -თან) და შემდეგნაირად გა-



ნისაზღვრება: (f ◦ g) (x) = f (g (x)) . f ◦ g-ს განსაზღვრის არე არის g-ს განსაზღვრის
არიდან ყველა იმ x რიცხვების სიმრავლე, რომელთათვის g (x) მოხვდება f -ის განსა-
ზღვრის არეში.

მაგალითი 1.7. ვთქვათ f (x) = x2 + 2x+ 3, g (x) = x+ 3. მაშინ

(f ◦ g) (x) = f (g (x)) = f(x+ 3) = (x+ 3)2 + 2 (x+ 3) + 3 = x2 + 8x+ 18,

(g ◦ f) (x) = g (f (x)) = g
(
x2 + 2x+ 3

)
= x2 + 2x+ 3 + 3 = x2 + 2x+ 6.

შენიშვნა. საზოგადოდ (f ◦ g) (x) ̸= (g ◦ f) (x) , მაგრამ არსებობს ისეთი ფუნქციათა
წყვილები, რომელთათვისაც სამართლიანია ტოლობა (f ◦ g) (x) = (g ◦ f) (x) .

განმარტება 1.8. ვთქვათ y = f (x) . განვიხილოთ ახალი ასახვა, რომელიც y ანასახს
აბრუნებს x-ში. ასეთ დამოკიდებულებას f -ის მნიშვნელობათა სიმრავლიდან მისივე
განსაზღვრის არეში ეწოდება შექცეული ფუნქცია და f−1 სიმბოლოთი აღინიშნება (შევ-
ნიშნოთ, რომ f−1 ̸= 1/f ). განმარტების საფუძველზე (f ◦ f−1) (x) = (f−1 ◦ f) (x) = x.

მაგალითი 1.9. ვთქვათ f (x) = 3x− 2, g (x) = 1
3
x+ 2

3
. მაშინ

(f ◦ g) (x) = f (g (x)) = f

(
1

3
x+

2

3

)
= 3

(
1

3
x+

2

3

)
− 2 = x,

(g ◦ f) (x) = g (f (x)) = g (3x− 2) =
1

3
(3x− 2) +

2

3
= x.

შექცეული ფუნქციები სიმეტრიულია y = x წრფის მიმართ. ანუ თუ გადავკეცავთ ამ
წრფის მიმართ, შექცეული ფუნქციები ერთმანეთს დაემთხვევა.

ნახ. 1.5



ზრდადი და კლებადი ფუნქციები

განმარტება 1.10. ფუნქციას f : E → R ეწოდება ზრდადი E სიმრავლეზე, თუ ამ
სიმრავლის ნებისმიერი x1 და x2 რიცხვებისთვის f (x1) ≤ f (x2) , როცა x1 < x2.

მაგალითი 1.11. განვიხილოთ ფუნქცია

f(x) =


x თუ 0 ≤ x ≤ 1
3
2
x+ 1

2
თუ 1 < x < 3

3 თუ x > 3

ნახ. 1.6

ადვილი შესამჩნევია, რომ ეს ფუნქცია ზრდადია თავის განსაზღვრის არეზე.

განმარტება 1.12. ფუნქციას ეწოდება კლებადი E სიმრავლეზე, თუ ამ სიმრავლის
ნებისმიერი x1 და x2 რიცხვებისთვის f (x1) ≥ f (x2) , როცა x1 < x2.

მაგალითი 1.13. განვიხილოთ ფუნქცია

f(x) =


−x+ 4, თუ 1 ≤ x < 2;

−x+ 4, თუ 2 < x < 3;

1, თუ x ≥ 3.

ნახ. 1.7

ადვილი შესამჩნევია, რომ ეს ფუნქცია კლებადია თავის განსაზღვრის არეზე.


