

NIKOLOZ SHAKULASHVILI

INTRODUCTION IN BIOMEDICAL LABORATORY WORK AND EQUIPMENT

Purpose
Description
Use
Operating principle

THE UNIVERSITY OF GEORGIA
PUBLISHING HOUSE

Author

Nikoloz Shakulashvili

Designer

Nino Suaridze

Nikoloz Shakulashvili © 2025

Georgian edition © The University of Georgia, 2025

Ltd. "The University of Georgia"

Address: 77a, M. Kostava Street

Tbilisi, 0171, Georgia

Tel.: +995 032 2 55 22 22

info@ug.edu.ge; ug.@ug.edu.ge

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission of the copyright holder.

Printed in Georgia

ISBN: 978-9941-9898-6-5

To Ekaterina, Sophia and Alexander

CONTENTS

ANNOTATION	7
PREFACE	9
SYMBOLS, ABBREVIATION LIST AND UNIT CONVERTOR	11
INTRODUCTION	13
GENERAL EQUIPMENT	15
1. WATER DISTILLER	17
2. WATER DEIONIZER	21
3. FUME HOOD	25
4. DRYING OVEN	29
5. INCUBATOR	32
6. DRY AIR THERMOSTAT	35
7. CIRCULATION THERMOSTAT	38
8. STERILIZER	42
9. LABORATORY WATER BATH	51
10. ULTRASONIC BATH	54
11. LABORATORY SHAKER	57
12. VORTEX MIXER	60
13. MAGNETIC STIRRER	64
14. LABORATORY SIEVES AND SHAKER	68
15. HEATING PLATE	72
16. ROUND BOTTOM FLASK HEATER (HEATING MANTLE)	75
17. ROTARY EVAPORATOR	77
18. DIGESTION SYSTEM	83
19. MUFFLE FURNACE	90
20. LABORATORY HOMOGENIZER	93
21. VACUUM FILTRATION SYSTEMS	100
22. LABORATORY CENTRIFUGE	104
23. MICROCENTRIFUGE	109

24. VACUUM SOLID PHASE EXTRACTION SPE MANIFOLD	110
25. ASPIRATORS	119
26. ANALYTICAL BALANCES	122
27. STANDARD PRECISION ELECTRONIC TOPLOADING BALANCES	128
28. AUTOMATIC PIPETTES	130
29. DISPENSERS	141
30. LABORATORY OVERHEAD STIRRERS	143
OTHER KINDS OF EQUIPMENT	147
1. KJELDAHL DIGESTION AND DISTILLATION UNITS	149
2. SOXHLET EXTRACTOR	155
3. CENTRIFUGAL EVAPORATORS (REFRIGERATED VACUUM CONCENTRATORS)	161
4. VACUUM FREEZE DRYER	165
5. LABORATORY FREEZER	171
6. UV CHAMBERS OF DISINFECTION - UV-CLEANER BOXES	174
7. LAMINAR FLOW CABINET	177
8. PERISTALTIC PUMPS	181
9. DIGITAL BURETTE / BOTTLE-TOP BURETTE	185
10. LABORATORY GLASSWARE DRYERS	188
11. MANUAL COLONY COUNTER	190
12. LABORATORY NITROGEN EVAPORATORS (SAMPLE CONCENTRATORS)	193
13. LABORATORY REACTORS (REACTOR SYSTEMS)	196
14. INFRARED MICRO STERILIZER	201
15. LIGHT MICROSCOPES AND THEIR TYPES	203
LITERATURE INDEX	214
MATERIAL FOR THE UPCOMING ISSUE - MEASURING EQUIPMENT AND ANALYZERS	216

ANNOTATION

The book is designed to give readers information on the pieces of most important modern general equipment for laboratories, describe their purpose, scope, and operational principles and provide technical specifications.

This publication aims to strengthen competences and form both theoretical knowledge and practical skills of how to use, maintenance, service and carrying out minor repairs of laboratory instruments for qualified and accurate sample preparation, as well as for precise analyses and to provide valid measurement procedures. Studying the structure of the equipment, the principle of operation, application and the tasks they perform is also an important goal of this publication. The devices discussed are essential components of equipment for various types of laboratories, including medical, biomedical, diagnostic, dentistry, pharmacy and forensic laboratories and institutions, research centers, veterinary clinics, chemical, biological, cosmetic, and pharmaceutical facilities, blood centers, mining and processing enterprises, testing and calibration laboratories, certification and supervisory authorities, food industry companies, universities, colleges, and so forth.

This publication is intended for students of universities, higher education institutions, and colleges in the fields such as medicine, biomedicine, pharmacy, dentistry, chemistry, biology, biochemistry, microbiology, biotechnology, chemical technology, petrochemistry, laboratory work. It may also be useful for students in other disciplines, particularly in ecology, geology, new materials, modern technologies and related areas. Additionally, it will be of interest to postgraduate students, residents, teachers and laboratory assistants, including those in laboratory medicine.

Many laboratories utilize multiple types of equipment, so before ordering and purchasing a device, it is important to consider the specific tasks laboratory research involves. Selecting the appropriate laboratory instruments for specific applications is crucial for ensuring accurate results and reliable operations. I think, the present book can be helpful for proper choice.

PREFACE

The idea behind this collection of works was to collect information on the pieces of most important modern general equipment for laboratories, describe their purpose, scope, and operational principles and provide technical specifications. The book is designed to give readers an understanding of the general equipment that a laboratory in a specific field and for a particular purpose may be equipped with. Naturally, it is impossible to cover all pieces of such equipment and devices in a single publication, but those included here are among the most commonly used and I believe, will capture readers' interest.

This publication aims to strengthen competences and form both theoretical knowledge and practical skills of how to use, maintenance, service and carrying out minor repairs of laboratory instruments for qualified and accurate sample preparation, as well as for precise analyses and to provide valid measurement procedures. Studying the structure of the equipment, the principle of operation, application and the tasks they perform is also an important goal of this publication. The devices discussed are essential components of equipment for various types of laboratories, including medical, biomedical, diagnostic, dentistry, pharmacy and forensic laboratories and institutions, research centers, veterinary clinics, chemical, biological, cosmetic, and pharmaceutical facilities, blood centers, mining and processing enterprises, testing and calibration laboratories, certification and supervisory authorities, food industry companies, universities, colleges, and so forth.

Many laboratories utilize multiple types of equipment, so before ordering and purchasing a device, it is important to consider the specific tasks laboratory research involves and to consult manufacturers or distributors. Selecting the appropriate laboratory instruments for specific applications is crucial for ensuring accurate results and reliable operations. Before installing or operating any devices, it is mandatory to read the "operational manual" and accompanying documents. First of all, you should familiarize yourself with the safety rules.

This publication is intended for students of universities, higher education institutions, and colleges in the fields such as medicine, biomedicine, pharmacy, dentistry, chemistry, biology, biochemistry, microbiology, biotechnology, chemical technology, petrochemistry, laboratory work. It may also be useful for students in other disciplines, particularly in ecology, geology, new materials, modern technologies and related areas. Additionally, it will be of interest to postgraduate students, residents, teachers and laboratory assistants, including those in laboratory medicine.

The book is richly illustrated. The illustrations are selected based on the principle of analogy to the devices described in the book. The author thanks the equipment manufacturing companies **OLIS** (Ukraine, <https://olis.com.ua>), **RADWAG** (Poland, <https://radwag.com>), **Biosan** (Latvia, <https://biosan.lv>), **BOECO** (Germany, <https://www.boeco.com>), **Witeg** (Germany, <https://www.witeg.de>), **C. Gerhardt GmbH & Co. KG** (Germany, <https://www.gerhardt.de>), **Retsch** (Germany, <https://www.retsch.com>), **Berghof** (Germany, <https://www.berghof.com>), **Martin Christ Gefriertrocknungsanlagen GmbH** (Germany, <https://www.martinchrist.de>), **Hercuvan Lab. Systems** (UK, Malaysia, <https://hercuvan.com/>), **Microlit** (USA, www.microlit.com), **HOM-MAK** (Turkey, www.hommak.com) and **AHN Biotechnologie GmbH** (Germany, www.ahn-bio.com) for kindly granting permission to include images of their products and other schemes in this book. Some diagrams and photos were sourced from freely available online sources.

The reader should bear in mind that the equipment discussed and displayed in this book may vary visually and in design depending on the manufacturer. This is the first book in the series and covers general laboratory equipment. The next volume will focus on measuring instruments and analyzers for performing a wide range of tasks. The idea for this book's publication was proposed on behalf of the laboratory of biomedicine, where the author works, and was supported by the School of Medicine at the University of Georgia. The book partially reflects the materials of lectures given to students of the School of Medicine.

Tbilisi, 2025

Nikoloz Shakulashvili

SYMBOLS, ABBREVIATION LIST AND UNIT CONVERTOR

(to be found in present issue)

$^{\circ}\text{C}$	–	grad Celsius	–	unit of temperature on the Celsius temperature scale in the International System of Units (SI)
cm	–	centimeter	–	unit of length in the International System of Units (SI)
g	–	gram	–	unit of mass in the International System of Units (SI)
kHz	–	kilohertz	–	unit of frequency equal to 10^3 Hertz
kW	–	kilowatt	–	unit of power or radiant flux equal to 10^3 Watt
l	–	liter	–	unit of volume in the International System of Units (SI)
m^3/h	–	cubic meter in 1 hour	–	volumetric flow rate
μl	–	microliter	–	unit of volume equal to 10^{-6} liter
$\mu\text{S}/\text{cm}$	–	microsiemens per centimeter	–	unit in the category of electric conductivity
mbar	–	millibar	–	metric unit of pressure equal to 10^{-3} bar
mg	–	milligram	–	unit of mass equal to 10^{-3} gram
ml	–	milliliter	–	unit of volume equal to 10^{-3} liter
mm	–	millimeter	–	unit of length equal to 10^{-3} meter
MPa	–	megapascal	–	unit of pressure equal to 10^6 Pascal
m/S	–	meter per second	–	unit of both speed and velocity

$M\Omega/cm$	–	$M\Omega$ per centimeter	–	(a $M\Omega$, or Mho, or Megohm is the multiplicative inverse of an ohm).
				unit of electrical resistivity (water quality indicator for the concentration of ions)
Pa	–	Pascal	–	unit of pressure in the International System of Units (SI)
psi	–	Pound per square inch	–	unit of pressure
rpm	–	rpm	–	unit of rotational speed (or rotational frequency)
ω/min	–	oscillation/min	–	repeated movement from one position to another per min

DNA	–	Deoxyribonucleic acid
GC	–	Gas Chromatography
HEPA	–	High-efficiency particulate air (type of filter)
HPLC	–	High-performance liquid chromatography
PCR	–	Polymerase chain reaction
PTFE	–	Polytetrafluoroethylene
RNA	–	Ribonucleic acid
SPE	–	Solid-phase extraction
TLC	–	Thin-layer chromatography
ULPA	–	Ultra-low particulate air (type of filter)
UV	–	Ultraviolet

Unit convertor

$$1 \mu S/cm = 10^{-6} M\Omega/cm$$

$$1 \text{ bar} = 0.9869 \text{ atm} = 100000 \text{ Pa} = 14.5031 \text{ psi}$$

INTRODUCTION

Classification and Categories of Laboratory Equipment

Laboratory equipment encompasses devices, instruments, and tools used in laboratory work for sampling and sample preparation, testing and research, and qualitative and quantitative analyses. This is a general term for a variety of tools used in different types of laboratories.

Classification

Laboratory equipment can be divided into the following main categories, which can then be further divided into subcategories:

- General laboratory equipment;
- Special equipment;
- Measuring equipment;
- Analytical equipment;
- Testing equipment.

General laboratory equipment as described in this edition is used in the process of sample preparation, during intermediate tasks before the study, and for analysis. For example, this includes equipment used for grinding, filtering, sieving, mixing, separation, thermal or ultrasonic treatment, temperature maintenance, extraction, and so forth.

General laboratory equipment can be divided into the following subcategories:

- Heating, cooling, and thermostatting equipment;
- Mixing and separation equipment;
- Equipment for component isolation.

Special laboratory equipment refers to devices necessary for solving specific problems typical of a particular laboratory. For example, this category includes equipment designed to create sterile conditions.