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Abstract — We present without proof the following result: if X is  
a Banach space and a weakly sub-Gaussian random element in X  
induces  the  2-summing  operator,  then  it  is  T  −sub-Gaussian  
provided  that  X  is  a  reflexive  type  2  space.  Using  this  result  we  
obtain  a  characterization  of  weakly  sub-Gaussian  random  
elements in a Hilbert space which are T− sub-Gaussian.
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I.  INTRODUCTION

Let (Ω, A, P) be a probability space. Following [7] we call

a real-valued measurable function ξ : Ω → R a sub-Gaussian

random variable if there exists a real number a ≥ 0 such that

for every real number t the following inequality is valid

E etξ ≤ e
1
2a

2t2 ,

where E stands for the mathematical expectation.

To each random variable ξ it corresponds a parameter

τ(ξ) ∈ [0,+∞] defined as follows (we agree inf(∅) = +∞):

τ(ξ) = inf
{
a ≥ 0 : E etξ ≤ e

1
2a

2t2 , t ∈ R

}
.

A random variable ξ is sub-Gaussian if and only if τ(ξ) < +∞
and Eξ = 0. Moreover, if ξ is a sub-Gaussian random variable,

then for every real number t

E etξ ≤ e
1
2 τ

2(ξ)t2

and (
Eξ2

) 1
2 ≤ τ(ξ) .

If ξ is a Gaussian random variable with Eξ = 0, then ξ is

sub-Gaussian and (
Eξ2

) 1
2 = τ(ξ) .

Remark 1.1: [3, Example 1.2]. If ξ is a bounded random

variable, i.e. if for some constant c ∈ R with 0 < c < +∞,

we have |ξ| ≤ c a.s. and Eξ = 0, then ξ is sub-Gaussian and

τ(ξ) ≤ c.

Denote by SG(Ω,A,P), or in short, by SG(Ω) the set of all

sub-Gaussian random variables defined on a probability space

(Ω,A,P). SG(Ω) is a vector space over R with respect to the

natural point-wise operations; moreover, the functional τ(·)

is a norm on SG(Ω) (provided that random variables which

coincide almost surely are identified) and (SG(Ω), τ(·)) is a

Banach space [2]. For ξ ∈ SG(Ω) instead of τ(ξ) we will

write also ‖ξ‖SG(Ω).

More information about the sub-Gaussian random variables

can be found for example in [5], [6].

Let X be a Banach space over R with a norm ‖ · ‖ and X∗

be its dual space. The value of the linear functional x∗ ∈ X∗

at an element x ∈ X is denoted by the symbol 〈x∗, x〉.
Following [11, p. 88] a mapping ξ : Ω → X is called a

random element (vector) in X if 〈x∗, ξ〉 is a random variable

for every x∗ ∈ X∗.

If 0 < p < ∞, then a random element ξ in a Banach space

X:

• has a weak p-th order, if E |〈x∗, ξ〉|p < ∞ for every

x∗ ∈ X∗;

• is centered, if ξ has a weak first order and E 〈x∗, ξ〉 = 0
for every x∗ ∈ X∗.

To each weak second-order centered random element ξ in

a separable Banach space X it corresponds a mapping Rξ :
X∗ → X such that

〈y∗, Rξx
∗〉 = E 〈y∗, ξ〉〈x∗, ξ〉, for every x∗, y∗ ∈ X∗,

which is called the covariance operator of ξ [11, Corollary 2

(p.172)].

A random element ξ : Ω → X is called Gaussian, if

for each functional x∗ ∈ X∗ the random variable 〈x∗, ξ〉 is

Gaussian.

A mapping R : X∗ → X is said to be a Gaussian
covariance, if there exists a Gaussian random element in X
whose covariance operator is R.

A random element ξ : Ω → X will be called weakly sub-
Gaussian [10], if for each x∗ ∈ X∗ the random variable

〈x∗, ξ〉 is sub-Gaussian.

A random element ξ : Ω → X will be called T−sub-
Gaussian [9] (or γ−sub-Gaussian [4]), if there exists a prob-

ability space (Ω′,A′,P′) and a centered Gaussian random

element η : Ω′ → X such that for each x∗ ∈ X∗

E e〈x
∗,ξ〉 ≤ E e〈x

∗,η〉 . (1.1)
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Theorem 1.2: (a) If X is finite-dimensional Banach space,

then every weakly sub-Gaussian random element in X is

T−sub-Gaussian.

(b) If X is infinite-dimensional separable Banach space,

then there exist a weakly sub-Gaussian random element in X .

which is not T−sub-Gaussian.

To every weakly sub-Gaussian random element ξ : Ω → X
we associate the induced linear operator

Tξ : X∗ → SG(Ω)
defined by the equality:

Tξx
∗ = 〈x∗, ξ〉 for all x∗ ∈ X∗.

Let X and Y be Banach spaces, L(X,Y ) be the space of all

continuous linear operators acting from X to Y . An operator

T ∈ L(X,Y ) is called 2-(absolutely) summing if there exists

a constant C > 0 such that for each natural number n and for

every choice x1, x2, . . . , xn of elements from X we have(
n∑

k=1

||Txk||2
)1/2

≤ C sup
||x∗||X∗≤1

(
n∑

k=1

|〈x∗, xk〉|2
)1/2

. (1.2).

For a 2-summing T : X → Y we denote the minimum

possible constant C in (1.2) by π2(T ).
We say that a Banach space X has type 2, if there exists a

finite constant C ≥ 0 such that for each natural number n and

for every choice x1, x2, . . . , xn of elements from X we have

∞∑
k=1

τ2(〈ϕk, ξ〉) < ∞ .

In connection with Theorem 2.2 naturally arises the follow-

ing question: is it possible to replace the condition (iim) by

the following (weaker) condition?

(iiw) There is an orthonormal basis (ϕk) of H such that
∞∑
k=1

τ2(〈ϕk, ξ〉) < ∞ .

In [1, Remark 4.3] it is claimed that the answer to this

question is positive.

At the end we pose another interesting question related to

Theorem 2.2: does there exist a bounded centered random

element ξ in a separable infinite-dimensional Hilbert space

H such that ∞∑
k=1

τ2(〈ψk, ξ〉) = ∞

for every orthonormal bases (ψk) of H?

The work was partially supported by the European Union’s
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Theorem 2.2: Let H be an infinite-dimensional separable

Hilbert space. For a weakly sub-Gaussian random element ξ :
Ω → H the following statements are equivalent:

(i) ξ is T−sub-Gaussian.

(iim) For each orthonormal basis (ϕk) of H

⎛
⎝∫ 1

0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥
2

dt

⎞
⎠

1/2

≤ C

(
n∑

k=1

‖xk‖2
)1/2

,

where r1(·), . . . , rn(·) are Rademacher functions on [0, 1]. An

example of a type 2 space is a Hilbert space as well as the

spaces lp, Lp([0, 1]), 2 ≤ p < +∞.

II. MAIN RESULTS

The following theorem is a slightly corrected version of [8,

Theorem 1.7].

Theorem 2.1: Let X be a separable Banach space. For a

weakly sub-Gaussian random element ξ : Ω → X consider

the assertions:

(i) ξ is T−sub-Gaussian.

(ii) Tξ : X∗ → SG(Ω) is a 2-summing operator.

Then:

(a) (i) =⇒ (ii);

(b) The implication (ii) =⇒ (i) is true provided that X is

a reflexive Banach space of type 2.

Consider now the case when X = H , where H denotes

an infinite-dimensional separable Hilbert space with the inner

product 〈·, ·〉. As usual we identify H∗ with H by means of

the equality H∗ = {〈·, y〉 : y ∈ H}.

Theorem 2.1 implies the following result, which is related

with the similar assertion contained in [1, Proposition 3.1].
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