
On the Numerical Solution of the
Characteristic Problem for one Quasi-Linear

Equation

Abstract — For linear differential equations solving the 
Goursat problem means to find a solution to the equation by 
given values on arcs of characteristics of different families. These 
arcs have one common point and their tangents are different at
this point. As for nonlinear equations, families of characteristic 
curves depend on the sought solution and therefore are unknown 
in advance. For that reason, it is impossible to pose the
characteristic problem (analogue of Goursat problem) for a 
nonlinear equation in the same way we do it for a linear one. In
this paper we present a numerical method to solve one class of 
quasi-linear equations whose one of characteristics is straight 
line. One of the families of characteristics is completely 
determined, while the other depends on the first derivatives of 
unknown solution and thus is not determined in advance. The 
type of equation is hyperbolic with possible parabolic degeneracy 
and this fact should be taken into account so that the problem is
posed correctly. For finding a numerical solution of the problem 
we propose an algorithm which is based on the well-known 
method of characteristics.

Keywords Quasi-linear hyperbolic equation, 
Characteristic Problem, Grid-characteristic method.

I. INTRODUCTION
As is known, for linear equations, Goursat problem

consists in finding a solution to the equation by its values
given on the arcs of characteristics of different families 
coming out from one point. For the numerical solution of such 
problems, an effective method is the grid-characteristic 
method. Nowadays, the grid-characteristic method is gaining 
popularity for linear hyperbolic systems of equations (see, for 
example, [1-2]). As for nonlinear equations, families of 
characteristic curves depend on the value of the unknown
solution and therefore are not known in advance. For this 
reason, posing the Characteristic problem in the same way as 
is known for linear equations (see, for example, [3]) is 
impossible. We will consider the case when for a quasilinear 
equation it is still possible to formulate similar problem and at 
the same time, we will justify the numerical method.

In this paper, we consider a quasilinear equation, on the 
example of which the characteristic problem is correctly 
posed and we also introduce a numerical algorithm to solve 
the problem. Equations of this type were considered in papers 
[4–13, 15], in which initial, characteristic and initial-
characteristic problems were studied.

In the plane of variables x, y, consider the following
second order quasi-linear equation

                                   (1)
It should not be classified as strictly hyperbolic equation, since the 
corresponding characteristic form degenerates and this 
degeneration depends on behavior of solutions of the equation. In 
particular, when the sum of derivatives of solution equals
to one, the equation has parabolic degeneracy. Therefore (1) is of 
mixed hyperbolic-parabolic type.

II. CHARACTERISTIC PROBLEM
In this section, we consider the equation

                               (2)
The differential characteristic relations of equation (2)

have the following form:

(3)

                        (4)

where are the Monge notations.
Having studied these systems, we come to the conclusion 

that one family of characteristic curves corresponding to 
system (3), is completely defined and is given by straight lines

                                    (5)
Along this family, the characteristic invariant

                            (6)
retains a constant value.

As for the second family of characteristics, it is defined as 
follows

(7)
along which the invariant 

(8)
remains constant.

As the structure of invariant (8) shows, the family of
characteristic curves corresponding to system (4) depends on 
the first derivatives of the unknown solution and thus it is not 
determined in advance. Since the characteristic family (6) is 
completely defined, the condition on this characteristic can be 
specified in the same way as in the case of linear equations. In 
particular, along the straight line the value of the 
solution is specified. We also have to check that this value does
not cause parabolic degeneration of the equation at some point.

On the segment of the characteristic curve 
consider the condition

             (9)
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At each point of the segment  we can compute a
derivative of the solution with respect to the characteristic 
direction. Formally we can write that

To avoid parabolic degeneracy, we require that
                       (10)

The characteristic lines corresponding to differential 
relations (4) are completely determined, as they are given by 
equation (6). Due to the fact that the sum included in 
(6) can be calculated at each point , we can draw a
characteristic curve through any point of this segment that
corresponds to system (4), Including the curve that passes
through the end of , and is defined explicitly:

          (11)
As we see, from the given value of the solution on the 

segment , the curve of family (4) is clearly determined.
Consequently, it is possible to set the value of the solution on 
the arc of the characteristic curve (11):

(12)
where is a given function. We should note, that
characteristics , , constitute the support of the problem
conditions.

Therefore, the problem can be formulated as follows:
Characteristic problem:

Find a regular solution to equation (2) along with its 
domain of definition, if characteristic conditions (9) and (12)
are satisfied, when

.

The following Theorem is true:

Theorem 1: If from the functional equation 
,

we can uniquely find the quantity as function of variables
there exists a unique regular solution of the

Characteristic Problem (2), (9), (12), and this solution is 
defined in the Domain , which is bounded by 

, ,

characteristic curves.

Proof: We are able to find the values of the derivatives of 
the solution using the curves and :

The domain of definition of the solution to the problem 
will be bounded by the characteristic curves emerging from 
the ends of the segment and the arc . These curves and
arcs of characteristics , , create the curvilinear
quadrilateral , which is completely covered by characteristic 
lines emanating from each point of the arc and . For
example, through the arbitrary point  of the segment

passes a characteristic, equation of which has the following
form:

,
And through the arbitrary point of the segment 

passes a characteristic curve given by the equation:

For arbitrary chosen characteristics , it’s easy to
determine both the point of intersection and the value 
of the solution at this point. The coordinates are
determined as functions of :

Along the segment the following relation is true:
(13)

Analogously, along the segment we have:

= (14)
Let us assume that the curves and intersect at point

In this case, from the relations (13), (14), derivatives
of the solution at this point are determined as follows:

So, it appears that we can find the value of the solution at 
this point. 

All these considerations do not mean that we constructed 
the solution in an explicit way. In order to do so, we should 
have a possibility to find a value of our solution dependent on 

at any point Let’s draw the
characteristic curves of the both families at this point. Let’s 
denote by a straight line passing through the point ,
corresponding to the system (3). By we denote the
characteristic which corresponds to the system (4).

Let us also denote by point of intersection of 
with the segment . Thus, the equation of characteristic curve

will be written as follows:

If we consider equations of  and as a functional system,
with respect of variables , it is easy to determine the 
coordinates of their point of intersection: 

,

We should find the coordinates of the point of intersection 
of characteristics and . Since, the equation of the curve

contains unknown quantity , we have to act in a different
way: According to our condition, goes through .
So, we can write:

And from this relation we should determine as a
function of variables . �
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III. NUMERICAL METHOD 
 

After these considerations, in order to solve the problem 
(2), (9), (12), numerically, we can formulate grid-
characteristic method.  

On the segment [ ] we introduce a grid : 

 

On the segment [ ] we introduce a grid  : 
, 

}. 

Points  are the first row of 
calculated points. The next row of points is obtained by the 
intersection of characteristics of the family (3) and (4) coming 
from the points of first row and from point 

respectively, etc. If the -th row of designed 
points (  is determined, then the first approximation of 
the next row is determined by the formulas: 

                                  (15) 

                   (16) 

where are the value of the functions  at the 
point (  

After this, the values of the derivatives and the 
solution  at the point (

are calculated using the formulas: 
 

          (17) 

 
 
                   (18) 

 

 

(19) 
To clarify the calculation formulas, we use recalculation 

of the point  and of the values of 
 These formulas have the following form for 

all : 

      (20) 

 

 

          (21) 
 

                                    (22) 

                    

 

 

      (23) 
Theorem 2:  Let  and condition (10) be 

satisfied, then scheme (15-23) converges to the solution of the 
Characteristic problem (2), (9), (12) and the rate of 
convergence of the difference schemes is  where 

. 
 

Proof. Let    be an area bounded by 
characteristics ,     . From the relations (15), (16), 
we obtain that  

   (24) 

(25)
where 

   
. 

We introduce the following notations: 
 

 
Inserting the values of  into (15), (16) and taking 

in account the equalities (24), (25), we obtain: 

 

 

Consequently, if the condition (10) holds, from the last 
equations we conclude: 

,  ,   
where 

. 
It is easy to obtain analogous estimations for  

And for the process of recalculation, we come to conclusion 
that if the condition (10) holds, then the following equalities 
are true: 

 

�
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