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Abstract — This paper investigates a multiprocessor 
queueing system in which each incoming task requires a variable 
number of service nodes, reflecting the diverse resource 
demands found in modern parallel computing environments. By 
modelling the task arrival and service processes using Poisson 
and exponential distri-butions, the system’s behaviour is 
analyzed through differential-difference equations that govern 
the steady-state probabilities. The research provides a 
comprehensive solution for determining the probability of 
different numbers of tasks being serviced, considering 
both the acceptance and rejection of tasks based on system 
capacity. The derived results offer valuable insights into 
optimizing system performance in terms of throughput, task 
completion, and resource utilization for multiprocessor systems.

 Keywords — Queueing Theory, Multiprocessor System, 
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I. INTRODUCTION
The rapid advancement of high-speed computing tech-

nologies has significantly transformed various scientific and 
industrial domains. Parallel computing systems, in particular, have 
become crucial for efficiently processing large-scale tasks that 
require substantial computational power. In recent years, 
multiprocessor systems, characterized by their ability to 
perform simultaneous operations across multiple processors, 
have gained considerable attention due to their potential 
to enhance performance and reduce execution times [1], [2]. In 
the context of queueing theory, multiprocessor systems can be 
modelled as multi-server service systems, where incoming tasks 
require the allocation of a specific number of service nodes 
for processing. Unlike traditional queueing models, which 
assume one service node per task [3], [4], this research 
introduces a custom number of service nodes for each task, 
depending on its resource requirements. This approach allows 
for a more realistic representation of modern computing 
envi-ronments, where task complexity and resource demands 
vary significantly.

The core objective of this study is to analyze the 
steady-state probabilities of the multiprocessor queueing 
system with tasks requiring multiple processors to service, 
considering exponential distributions for both task arrival 
and execution.

II. QUEUEING MODEL

This paper investigates a queueing system, with the 
follow-ing assumptions:

• A multiprocessor computing system comprising m pro-

cessors (also referred to as cores or nodes, where m ≥ 1)

is considered a queueing system.

• Each task within the system is characterized by a random

parameter, denoted as ν. Here, ν represents the number

of computing resources required by the task for servicing,

which could be processors, cores, cluster nodes, etc.

• Upon arrival in the system, tasks are subjected to either

acceptance for servicing or rejection. The duration re-

quired for task servicing is partly contingent, it represents

the maximum allowable time for task completion but is

inherently random and may be shorter. Tasks face service

denial if, upon entry into the system, it becomes evident

that their specified parameters cannot be met. This occurs

when the system lacks the requisite idle processors to

initiate service.

• Tasks arrive at the system individually following a Pois-

son process characterized by a rate parameter α:

P (α < t) = 1− e−at,

where a is the intensity of the incoming stream(a > 0).

• Service times are modelled by an exponential distribution

with a density function described as follows:

P (β < t) = 1− e−bt,

where β is a random value of the task execution time and

b is the intensity of service(b > 0).

• ν represents the random number of computational re-

sources(service nodes) required for task execution. This

parameter follows a probability distribution:

P (ν = k) =
1

m
,

where k = 1, 2, ...,m.

Upon arrival, tasks undergo either acceptance for service

or rejection. Once service begins, it continues uninterrupted

until completion. These assumptions provide a framework for

analyzing the dynamics of task arrival and service completion

within the multiprocessor queueing system.
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III. MATHEMATICAL MODEL FORMULATION

To analyze the queuing system, it is essential to identify 
the following notation: Pk(t) represents the probability that k 
tasks are being serviced in the system at time t.

It is a well-established principle that the flow resulting from 
multiple elementary flows r emains e lementary. Furthermore, 
the probability of multiple events occurring within a short 
interval h is negligible typically denoted as o(h). Leveraging 
this fact, and considering all possible scenarios concerning the 
system’s states at time t, specifically, f ocusing o n instances 
where the system transitions during the time interval h to 
the state where k tasks are being serviced, the differential-

difference equations of the system are given by:

dP0(t)

dt
= −aP0(t) + bP1(t), k = 0 (1)

dPk(t)

dt
= aδ

(1)
k−1Pk−1(t)− [a(1− δ

(0)
k ) + kb]Pk(t)

+ (k + 1)bPk+1(t), k ≥ 1
(2)

where the δ
(0)
k and δ

(1)
k probabilities are determined as follows:

δ
(0)
k = P

(
k+1∑
i=1

νi > m

/
k∑

i=1

νi ≤ m

)

δ
(1)
k = P

(
k+1∑
i=1

νi ≤ m

/
k∑

i=1

νi ≤ m

)

It is evident that the following expressions express the con-

ditional probability and by using the formula for calculating

the conditional probability δ
(0)
k and δ

(1)
k probabilities can be

calculated as follows:

δ
(0)
k =

P

(
k∑

i=1

νi ≤ m <
k+1∑
i=1

νi

)

P

(
k∑

i=1

νi ≤ m

)

δ
(1)
k =

P

(
k+1∑
i=1

νi ≤ m

)

P

(
k∑

i=1

νi ≤ m

)

Using some sporting probability formulas from previous

works[5] and simplifying the expressions, the following for-

mulas are obtained:

δ
(0)
k =

k(m+ 1)

m(k + 1)
(3)

δ
(1)
k =

m− k

m(k + 1)
(4)

IV. STEADY-STATE PROBABILITIES

This section will outline the process of solving the recurrent 
equations derived from (1) and (2) when the queueing system 
goes into the steady state [6].

In steady state

lim
k→∞

dPk(t)

dt
= 0

lim
k→∞

Pk(t) = Pk

Therefore the equations (1) and (2) become:

−aP0 + bP1 = 0, k = 0

aδ
(1)
k−1Pk−1 − [a(1− δ

(0)
k )+kb]Pk

+ (k + 1)bPk+1 = 0, k ≥ 1

Now, taking into account (3) and (4) formulas for the δ
(0)
k and

δ
(1)
k probabilities and simplifying the expressions:

P1 = αP0, (5)

Pk+1 =
α(m− k) +mk(k + 1)

m(k + 1)2
Pk − α(m− k + 1)

mk(k + 1)
Pk−1

where α is defined by α = a/b.
By expanding the terms using the following definitions:

xk =
α(m− k) +mk(k + 1)

m(k + 1)2

yk =
α(m− k + 1)

mk(k + 1)

The formula for Pk+1 can be rewritten as:

Pk+1 = xkPk − ykPk−1 (6)

The equations (5) and (6) are solved recurrently to obtain:

Pk =

αk
k−1∏
i=1

(m− i)

(k! )2mk−1
P0, k ≥ 1. (7)

By substituting some binomial coefficient formulas and per-

forming some straightforward mathematical transformations

into equation (7), the probability Pk can be determined by

the following formula:

Pk =
αk

k!mk

(
m

k

)
P0, k ≥ 1.

As the capacity of the system (i.e. the total number of tasks

that can accommodate) is finite, say n, then using the condition

of normality:
n∑

k=0

Pk = 1

and by substituting the derived formulas for Pk into it, P0 can

be determined as the following:

P0 =
1

1 +
n∑

k=1

αk

k!mk

(
m

k

)
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V. CONCLUSION

In tIn this paper, a queueing model has been developed to 
analyze the steady-state behaviour of a multiprocessor system, 
where each task requires a custom number of service nodes. 
The inclusion of varying task resource requirements 
significantly enhances the model’s relevance to modern high-
performance computing environments. By solving the 
differential-difference equations and deriving closed-form 
expressions for the steady-state probabilities. These results 
provide a foundation for further optimization of 
multiprocessor systems, enabling better management of 
computational resources in environments with varying task 
complexities. The findings contribute to the broader field of 
queueing theory by extending traditional models to more 
accurately reflect contemporary parallel computing challenges.

1. Vladimir Sahakyan, Artur Vardanyan, ”The Queue State
for Multipro cessor System with Waiting Time
Restriction”, Computer Science and Information
Technologies 2019, Conference Proceeding, Yerevan, pp.
116–119, 2019. DOI:
https://doi.org/10.1109/CSITechnol.2019.8895093.

2. Jain Anamika, Madhu Jain, Dheeraj Bhardwaj,
”Controllable multipro cessor queueing system”,
Applications of Mathematical Modeling, Ma chine
Learning, and Intelligent Computing for Industrial
Development, pp. 61-76, 2023. ISBN: 9781003386599

3. Bocharov P.P., D’Apice C., Pechinkin A.V., Salerno S.,
”Queueing Theory”, VSP, Utrecht, Boston, pp. 94-98,
2004. ISBN: 90-6764-398-X

4. Shortle J. F., Thompson J. M., Gross D., Harris C. M.,
Fundamentals of Queueing Theory, John Wiley and Sons,
New York, pp. 35-475, 2018. ISBN: 111894352X

5. Vladimir Sahakyan, Artur Vardanyan, ”A Computational
Approach for Evaluating Steady-State Probabilities and
Virtual Waiting Time of a Multiprocessor Queuing
System”, Programming and Computer Software, Volume
49, pp. S16–S23, 2023. DOI:
https://doi.org/10.1134/S0361768823090098.

6. Kleinrock L., Queueing Systems: Vol. — Theory, John
Wiley and Sons, New York, 1975, ISBN: 0-471-49110-1.

58

REFERENCES


