
Analysis of Time Measures for the M/G/1 System in
a Random Environment

The paper discusses the M/G/1 System in a Random 
Environment . In the system, the server is influenced by a 
random environment, the latter being a simple birth-death 
process. An analytical stochastic model is constructed and 
studied in terms of operational calculus. Steady state Laplace 
transforms for distribution functions of time measures namely 
virtual waiting time, sojourn time are derived. 
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I. INTRODUCTION
The analysis and design of modern information and 

telecommunication systems require the development of queueing 
models that consider the specifics of control, management, and 
external actions such as preemptive and batch service. This 
includes taking into consideration a variety of aspects, such as 
parallel operations and processes, variations in parameters and 
characteristics of arrivals and service, failures, and environmental 
renewal. Analytical challenges in many practical cases are 
effectively addressed within the framework of queueing systems 
operating in a random environment [1-5]. This is particularly 
important in systems with situationally integrable resources, 
where resources can be pooled to solve specific tasks as situations 
arise. Situational integrability refers to the ability to combine 
resources of a   queueing system to address specific tasks or 
groups of tasks as situations occur. This concept is fundamental 
in modern information and telecommunication networks, 
information processing centers including multiprocessor and 
multi-computing systems, switching node commutation units 
including special computing complexes, and multichannel data 
transmission channels. In such systems, the number of service 
facilities i.e channels for a given flow of customers changes 
randomly over time due to equipment failure, reallocation of 
server units for preemptive service, shutdowns for verification, 
diagnostics, maintenance, etc. Furthermore, the model can be 
generalized to include partial failures and other scenarios beyond 
those described in existing publications. This includes studying 
the intensity of server      
may depend on whether the system is idle or busy, i.e., the 
parameters of the random environment change depending on the 
state of the queuing system.

 

[3-9]. In this paper we consider the M/G/1 queue random 
environment.  
influenced by a random environment i.e. a random process 

(t) with a set of states I. I is a set with elements I = {0,1,2}, 
and changes its state based on the state of the environment. In 
other words, if (t  I,  belongs to I set, then the server is 

in State 0 is special, indicating that the server cannot 
begin service even if there are customers in the queue. When  
the system is busy, it operates in service cycles or sequences 
of cycles, with probabilistic characteristics independent of 
cycle types.

When the server is idle, the random environment (t) is 
modeled as a birth-death process with a set of states I ={0,1,2}
and transition intensities where ) and 
from - (
where )When the system is empty, the birth-death process acts 
as a random environment, and when the system is busy, the 
random environment affects only the initial probabilistic 
characteristics of the service.

This process can describe sequences of failures and 
renewals in a multi-channel redundancy system, with the 
states of the process (t) defining the number of operative 
channels or the number of channels allotted for serving a
special flow. In service cycles, the random environment (t) 
is disregarded, affecting only the initial characteristics of the 
queueing system. The behavior of the environment affects 
only the functions ( ), which is interpreted as follows:

( ) = {the service time of a customer is less than and
the state of the server or the process (t) at the end of the 

the beginning of the service [1,2].

II. ANALYSIS OF TIME MEASURES

In this section we analyze the probability characteristics of 
the waiting time of the demand and the sojourn time in the 
system. The Laplace-Stieltjes transforms of the distribution 
functions of these random variables are found.

Denote by ( ), = 1,2, the probability that at the moment 
of time the server is in the state and there are no demands 
in the service system.

I want to point out u ( ,t) as follows u ( ,t)=
after expiration U( ) (virtual waiting 

time) the  server  is in the state 
Now I would like to formulate theorem n1

Theorem 1: The functions , , and satisfies the
following system of differential and integro-differential 
equations which you can see on the slide 

+ + ) ( ) +( + ) ( )+ 1( ,0); (1)

+ + ) ( )+ ( )+ 2( ,0); (2) 

=

1( ,t)+ 1( , ) 11( ) 2( , ) 21( ) +
( ) 11( )+ ( ) 21( )+ ( ) ; (3)
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=
( ,t)+ 1( , ) 12( ) 2( , ) 22( )

+ ( ) 12( )+ ( ) 22( ). (4)
Now lets prove
Proof:

Let us consider an infinitesimal time interval ( , + ) and 
trace the behavior of the system in this interval. Conventional 
probabilistic reasoning leads to the following ratios: which 
you can see on the slide

( + )= ( + + ) ]+( + ) ( ) +u1(0, )+ ( )                                                          
( + )= ( + + ) ]+ ( ) +u2(0, ) + ( )

1( , + ) = 1( + , )+ 1( , ) 11( ) +
2( , ) 21( ) + ( ) 11( ) + ( ) 21( )

+ ( ) + ( );
2( , + ) = 2( + , )+ 1( , ) 12( )

+ 2( , ) 22( ) + ( ) 12( )+
( ) 22( )+ ( ),

where ( ) = ( ). derivative
After simple transformations and passing to the limit at 

, (h tends to 0) we obtain a system (1), (2), (3) and (4) 
expression.

We investigate the system at (t tends to infinity)
which corresponds to the stationary state.
The limits are denoted by = ( ); u ( )= u ( );
=1,2, We assume these limits exist. Keep in mind that these 

limits are equal to 0.

After passing to the limit at 
system:

( = + (0);  (5)
( = + (0); (6)

= 1( ) - 1( ) 11( ) -

2( ) 21( ) - ( ) 11( ) - ( ) 21( ) -
( ) ; (7)

= 2( ) - 1( ) 12( ) -

2( ) 22( ) - ( ) 12( ) - ( ) 22( ) (8)
Let us apply the Laplace transform to the last two 

equations. If we take into account the next expression which 
you see on the slide,

= s 1( )d 1

expressing u (0) through , from first two equations (5), (6)
and solving the system after transformation with respect to 

( ) we obtain the next expression:
(s) = (9)

where 
d( )=[ + ( )][ + ( 2 ( )· ( );
d ( )=[ + ( )] ( (s) ( ),    + =3;

1( )=( + + ) ( ( );
2( )=( + + ) ( + ) ( ( )-

/ + .

The expression for contains two unknowns and .
To determine them we use the normalization condition

+ + 1( ) + ( ) d =1,
or in operational form which you can see on expression No 

10.
+ + (0) + (0) = 1                         (10)

Using (9), we obtain the expressions for (0), =1,2.
After substituting these expressions into (10), we have the 
following equation

(0)+ (0) (1+ ) ( 1 2) +

[ (0)+ (0)+( + )( 1 2] 2=
= 2)+ 1) (11) 

Here 

1 = [ 1( )+ 2( )] = + ( )] =0.
i.e. is equal to the average service time per 

demand, assuming that service starts when the server is in the 
state .

As it can be seen from (11), for the existence of the 
stationary state it is necessary to satisfy the condition which 
you can see on expression no 12.    

2)+ 1) >0,                             (12)
0.

To find the second equation with respect to and it is
necessary to prove the following theorem.

Theorem 2: If condition (12) holds, the equation ( )=0 
has a real root 0>0.

Proof: Consider a function = ( ) for real . By direct 
substitution we obtain that d(0)=0. Moreover, as we pointed 

(0).  
It is also easy to see that ( (0)=0 

0, in some neighborhood of point  0 the function y=d( )
decreases and, considering that d( = , it becomes obvious 
that there exists  s0 such that ( 0)=0.

To illustrate this statement, let us show one of the variants 
for the graph of the function y= ( ) in Figure. 1.

Fig.1

The functions      are analytic functions in the domain
>0. Therefore, at the point 0, ( 0)=0,  =1,2. These

equations give a single equation with respect to and .  It
has the form = ,
where 
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Finally  we obtain the expressions for  and : 

=  

 
                                                           (13)  

  
 Let us denote by ) Laplace transform of the virtual 
waiting time distribution function for U( ). It is obvious that 
if there are no demands in the system and (t)=0, then U( )=0 
(the probability of this event is equal to  + ), otherwise 
U( )>0 (the probability density function of the virtual waiting 
time in this case is equal to u1( )+u2( )). 

Hence   
)= ( )=  +  + ( )+ ( )                        (14)  

 
Let us denote by 1( ) the Laplace Stieltjes transform of 

the distribution function for the customer sojourn time in the 
system. This time is the sum of waiting time and subsequent 
service time. The second term depends on the state in which 
the set of service devices was at the end of the waiting time 
(at the time of the beginning of subsequent service). 

Considering the above, the following expression is 
obtained 

 
1( )=[  + ( )] ( )+[ + ( )] ( ),           (15) 

where    
 ( )= ( )+ ( ) 
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