
Neural Networks vs. Traditional Techniques:
Differential Equation Approaches in Quantum Gate

Analysis

Abstract — The research evaluates the traditional
numerical algorithms and neural network-based methods for
solving ordi-nary differential equations. The evaluation covers
both mathe-matical and machine learning perspectives.
Practical experi-ments are carried out by implementing neural
networks and the necessary algorithms using the Julia
programming language. These experiments highlight
significant advancements in the realm of quantum
computing. Additionally, analyzing the effi-ciency metrics of
solving differential equations with numerical methods versus
neural networks uncovers intriguing results, which vary
based on the chosen architecture and network pa-rameters.

Keywords — Neural Network, differential equation, quan-
tum simulation.

I. INTRODUCTION
Quantum mechanical computing leverages the fundamen-

tal principles of quantum mechanics—including superposi-
tion, entanglement, tunneling, and annealing—to tackle prob-
lems beyond the reach of classical computers [1]. By utilizing
quantum bits (qubits) and these quantum phenomena, quan-
tum computers have the potential to revolutionize fields such
as material science, cryptography, and optimization with un-
paralleled efficiency [2, 3]. Notably, quantum computing ex-
cels at processing complex differential equations more effi-
ciently than traditional computers, enhancing the numerical
solutions for these equations [4]. Integrating neural networks
(NN) [5] is pivotal in advancing quantum mechanical compu-
ting, as NNs adeptly manage intricate data, optimize parame-
ters, and enhance the precision of quantum simulations.

Neural networks enable cutting-edge technologies to pro-
cess information at the molecular, atomic, and quantum dot
levels. These advancements promise to transform cryptog-
raphy and computational systems by enabling irreversible data
processing, thereby significantly improving information secu-

rity. Implementing of reversible quantum gates [6] and quan-
tum programmable logic gates [7] supports the development
of sophisticated computational architectures, essential for
building robust and intricate systems. Quantum gates manip-
ulate qubits through unitary transformations—reversible op-
erations that precisely alter qubit states—crucial for error cor-
rection and quantum communication tasks.

A notable advancement in quantum computing is the cre-
ation of a three-bit programmable atomic gate on a five-level
atom, achieved through the adiabatic transfer of atomic level
populations in an M-system [8]. This adiabatic transfer
method allows seamless transitions between atomic energy
levels while maintaining quantum coherence, a vital require-
ment for dependable quantum computations. This innovation
facilitates the implementation of complex quantum algorithms
and the realization of practical quantum technologies. Com-
bined with other non-reversible quantum gates [9], this ap-
proach marks a significant progression in the field.

The study focuses on the numerical solutions of non-sta-
tionary equations governing the density matrix of this five-
level system. Quantum gates play a crucial role in solving
complex systems of 25 differential equations, enabling a
deeper understanding and modeling of dynamic processes.
Specifically, the research examines the relaxation rates of
ground state levels in rubidium atomic vapor through fluores-
cence spectra analysis, a typical regression task [10]. Rubid-
ium vapor is particularly suited for investigating quantum
phenomena, atomic clocks, and quantum computing applica-
tions. Both linear and nonlinear machine learning (ML) tech-
niques were evaluated for their effectiveness in processing
and predicting these physical processes [11]. An optimal re-
gression model was developed, distinguished by its high ac-
curacy and ability to significantly accelerate the modeling of
critical functional indicators, thereby enhancing the prediction
and analysis of physical phenomena.

Romik Sargsyan
Russian-Armenian

University
Yerevan, Republic

of Armenia
e-mail:

romik.sargsyan@
student.rau.am

Roman Sahakyan
Russian-Armenian

University,
Yerevan, Republic

of Armenia
e-mail:

roman.sahakyan@
student.rau.am

Emil Gazazyan
Institute for Physical

Research of the
National Academy
of Sciences of the

Republic of Armenia
Institute for Informatics

and Automation
Problems of National
Academy of Science,

Yerevan, Republic
of Armenia

e-mail: emil@quopt.net

Shushanik Sargsyan
Institute for

Informatics and
Automation

Problems of the
National Academy of

Sciences of the
Republic of Armenia,

Yerevan, Republic
of Armenia

e-mail:
shush_sarg@mail.ru

Sevak Sargsyan
Centre of

Advanced Soft-
ware Technolo-
gies of Russian

Armenia
University,
Yerevan,
Republic

of Armenia
e-mail:

sevak.sargsyan@
rau.am

Hrachya Astsatryan
Institute for

Informatics and
Automation Prob-

lems of the Na-
tional Academy of
Sciences of the Re-
public of Armenia,
Yerevan, Republic

of Armenia
e-mail:

hrach@sci.com

https://doi.org/10.62343/csit.2024.4

13

The neural network approach for solving differential equa-
tions was successfully implemented using TensorFlow [12],
addressing both ordinary differential equations (ODE) and
partial differential equations (PDE) that do not involve com-
plex numbers. The method demonstrated exceptional conver-
gence, highlighting its advantages and significantly reducing
errors compared to traditional techniques such as Runge-Kutta
and finite difference methods [13, 14]. Additionally, this neu-
ral approach offers superior numerical stability, avoiding the
limitations imposed by the Courant-Friedrichs-Lewy condi-
tion [15], and can effectively solve PDEs on very coarse grids.

Among traditional numerical methods [4], neural net-
works [5, 16, 17] stand out as powerful tools for solving dif-
ferential equations. They are capable of modeling complex de-
pendencies and identifying patterns within data. Applying
neural networks to differential equation solving opens new av-
enues in dynamic system analysis, enabling highly accurate
approximate solutions and achieving these results with signif-
icantly reduced computational time compared to conventional
numerical methods.

The article seeks to assess traditional numerical methods
and NN approaches that handle complex numbers for solving
ordinary differential equations within a quantum two-level
system in quantum mechanics. By comparing the effective-
ness of these numerical techniques and NNs, the study high-
lights notable differences in computational accuracy, empha-
sizing the potential of neural networks in addressing intricate
mathematical challenges, especially in quantum computing.
These results carry significant implications for future quantum
physics research, particularly in simulating quantum compu-
tations where conventional methods might restrict the speed
and precision of data processing.

II. NEURAL NETWORKS FOR SOLVING
ORDINARY DIFFERENTIAL EQUATION

The study concentrates on the design of the neural network
architecture, including activation functions, optimization al-
gorithms, and training strategies, to ensure precise and effec-
tive system dynamics modeling. The network architecture is
meticulously crafted to manage the complexities of the quan-
tum two-level system under investigation, as depicted in Fig.
1. It comprises an input layer, two hidden layers, and an output
layer. The input layer features a single neuron, representing
the one-dimensional time input characteristic of dynamic sys-
tems. Each hidden layer contains 64 neurons, providing ample
capacity to handle the network’s information processing de-
mands. The output layer consists of four neurons, each di-
rectly corresponding to the four components of the system’s
state vector, ensuring a clear and direct relationship between
the network’s output and the physical states of the quantum
system.

Fig. 1: NN Model Architecture

The hidden layers use a complex sigmoid function for ac-
tivation, which is crucial for handling complex-valued inputs
and outputs. By integrating the real and imaginary compo-
nents of complex numbers, this function allows the network
to accurately simulate the subtle and intricate dynamics char-
acteristic of quantum mechanical systems.

Network optimization employs the Adam optimizer [19,
20], renowned for efficiently navigating complex optimiza-
tion landscapes and achieving rapid convergence. The learn-
ing rate is set at 0.01 to balance the speed and stability of the
training process.

The training regime adopts a stochastic approach, introducing
randomness in selecting data points to robustly mitigate the risk of
overfitting. This randomness prevents the model from excessively
memorizing the training data, enhancing its generalization capabil-
ities and ensuring adaptability to various scenarios within the quan-
tum system. The training dataset comprises 300 carefully selected
points, balancing computational efficiency with the complexity re-
quired to model the dynamic behaviors adequately. Additionally,
30,000 boundary condition points are included to ensure the net-
work rigorously adheres to the physical constraints and boundary
conditions essential for obtaining valid and meaningful solutions.

Network parameters are initialized using the kaiming_nor-
mal() function [19, 20], which scales the weights based on a
calculated standard deviation. This method maintains con-
sistent variances across neuron inputs and outputs, preserving
the integrity of signal propagation through the network layers.
Such initialization is particularly effective for networks han-
dling complex values, as it helps avoid issues like vanishing
or exploding gradients.

Before training, additional setup steps are performed using
Lux.setup(rng, chain) [19, 20]. These steps involve crucial tasks
such as parameter initialization and system configuration, ensuring
that the network is optimally prepared for the training phase. This
setup is vital for aligning the network’s operational parameters with
its architectural and strategic goals, thereby establishing a solid
foundation for efficient learning and accurate performance in com-
plex simulation tasks.

In addressing complex-valued Ordinary Differential Equations
(ODEs), the study employs the NNODE approach. This method
leverages the flexibility and adaptability of neural networks to ap-
proximate solutions to differential equations that are otherwise
challenging for traditional numerical solvers. Integrating neural
networks into the framework of differential equations offers a
promising avenue for tackling problems involving complex-valued
systems and intricate dynamics.

14

The NNODE method utilizes a neural network architec-
ture, comprising multiple layers, to represent the solution to
an ODE. The network receives the independent variables of
the ODE (e.g., time) as inputs and generates predictions for
the dependent variables (e.g., state vectors). A loss function,
derived from the given differential equation, is defined to train
the network and optimize its parameters (weights and biases).
This loss function assesses how well the neural network’s out-
put satisfies the ODE across a range of input values.

The essence of the NNODE approach lies in its iterative
training process, wherein the network minimizes the discrep-
ancy between its predicted solutions and the true solutions of
the ODE. The training involves three key components: the op-
timization algorithm [21], the loss function, and the training
strategy. Various strategies can be employed to determine the
points at which the ODE is evaluated during training. Tech-
niques such as stochastic training introduce randomness in the
selection process, thereby enhancing the network’s generali-
zation capabilities and preventing overfitting to specific data
points or patterns.

The L2 loss function (1), commonly used in training neu-
ral networks with the NeuralPDE.jl package, is calculated
based on the squared L2 norm between the network’s predic-
tions and the target values:

 (1)

where is the target value, is the corresponding predicted
value, and is the number of observations.

III. NEURAL NETWORKS FOR QUANTUM
SIMULATIONS

The study investigates the dynamics of a two-level quan-
tum system, which is distinguished by its capacity to exist in
a superposition of two distinct quantum states. These systems,
referred to as qubits, are fundamental for comprehending the
principles of quantum mechanics. To analyze their behavior,
mathematical methods based on linear differential equations
in two-dimensional spaces are employed. Specifically, the op-
tical Bloch equations [22, 23] are utilized to model the dynam-
ics of atoms and quantum bits under various external field in-
teractions. These equations incorporate the effects of field in-
teractions alongside quantum mechanical properties such as
coherence and superposition.
The optical Bloch equations governing the system are ex-
pressed as follows:

 (2)

where the matrix elements ij represent the density opera-
tor of the system, denotes the Rabi frequency, is the nat-
ural decay rate of the excited state, indicating how swiftly the
system returns to its ground state in the absence of external
disturbances. describes the transverse decay rate, capturing
the effects of environmental noise and interactions that cause

the degradation of quantum information stored within the sys-
tem. is the detuning parameter, representing the difference
between the external field frequency and the natural frequency
of the quantum transition.

Tables 1, 2, and 3 provide detailed data on the values of
the loss function (L2) and correlation coefficients when solv-
ing differential equations using neural networks (NN) for var-
ious parameters and . The loss function values reflect the
error between predicted and actual solutions, while the corre-
lation coefficients measure the similarity between the pre-
dicted and actual quantum states. Varying the values of and

 allows for the examination of how different parameters af-
fect the accuracy and correlation of neural networks in quan-
tum simulations.

 = -1 = 0 = 1

Loss function (L2)(2) 0.0000875 0.000805 0.0000869

The correlation coefficients
between and

0.99829 0.9993768 0.9990431

The correlation coefficients
between and

0.99834 0.9994245 0.9990781

Table 1 For =3 and loss function and correlation

 = -1 = 0 = 1

Loss function (L2)(2) 0.0003614 0.00028854 0.000315279

The correlation coeffi-
cients between and

0.99613571 0.99775968 0.996612334

The correlation coeffi-
cients between and

0.99637116 0.99783555 0.996645611

Table 2

 = -1 = 0 = 1

Loss function (L2)(2) 0.001605311 0.001269584 0.0012727

The correlation coeffi-
cients between and

0.989457997 0.990168838 0.9909499

The correlation coeffi-
cients between and

0.989868546 0.990391949 0.9910183

Table 3

15

These data enable the assessment of the accuracy and effi-
ciency of NN methods compared to traditional numerical
methods, such as the Runge-Kutta method. The loss function
(L2) is used to measure the accuracy of the neural network's
predictions relative to benchmark values, where low values of
the loss function indicate high prediction accuracy. In the pre-
sented tables, the loss function values vary depending on the
parameters and . Correlation coefficients are used to eval-
uate the degree of correspondence between the values ob-
tained using NNs (p and p) and the values obtained by
traditional numerical methods (n and n). High correlation
coefficients indicate a strong relationship between the two
data sets and confirm that neural networks can accurately
model the behavior of complex systems.

The obtained data demonstrate the high accuracy of NN
methods in solving differential equations and show a strong
correspondence with the results of traditional numerical meth-
ods. This indicates that neural networks are a reliable tool for
modeling complex quantum systems, providing high accuracy
and efficiency compared to classical approaches.

IV. CONCLUSION

This work presents an in-depth comparative analysis of al-
gorithms from traditional numerical methods and methods us-
ing NNs that handle complex numbers and the choice of acti-
vation functions for solving ordinary differential equations in
quantum computing. Experiments were conducted during the
study, demonstrating the efficiency of both approaches de-
pending on the characteristics of the architecture and network
parameters. The efficiency metrics of numerical methods and
NNs indicate significant differences in accuracy and compu-
tational speed, highlighting the potential of NNs in solving
complex mathematical These findings could have substantial
implications for future research in the fields of physics and
engineering, where traditional problems, especially in the
field of quantum computing. Methods may limit the speed and
accuracy of data processing.

ACKNOWLEDGMENT
The experiments utilized computational resources from

the Armenian cloud infrastructure [24]. Armenian cloud pro-
vided access to nearly 700 vCPUs. The Higher Education and
Science Committee of RA supported the work in the frames
of projects N 1-6/IPR and IIAP 1-8/24-I/IIAP

REFERENCES

1. R. P. Feynman, “Quantum mechanical computers,” Founda-
tions of Physics, vol. 16, pp. 507–531, Jun 1986.

2. U. R. Karpuzcu, ‘Special Issue on Quantum Computing’,
IEEE Micro, vol. 41, no. 5, pp. 6–7, 2021.

3. D. Richart, W. Laskowski, Y. Fischer, and H. Weinfurter, ‘Experi-
mental analysis of qudit entangled states using the time-energy de-
gree of freedom’, in 2013 Conference on Lasers & Electro-Optics
Europe & International Quantum Electronics Conference CLEO
EUROPE/IQEC, 2013, pp. 1–1.

4. C. Rackauckas and Q. Nie, “DifferentialEquations.jl–a performant
and feature-rich ecosystem for solving differential equations in
Julia,” Journal of Open Research Software, vol. 5, no. 1, 2017.

5. K. Zubov, Z. McCarthy, Y. Ma, F. Calisto, V. Pagliarino, S. Aze-
glio,L. Bottero, E. Luj´an, V. Sulzer, A. Bharambe, N. Vinchhi, K.
Balakrishnan, D. Upadhyay, and C. Rackauckas, “Neuralpde: Auto-
mating physics-informed neural networks (pinns) with error approx-
imations,” 2021.

6. G. Grigoryan, V. Chaltykyan, E. Gazazyan, and O. Tikhova,
“All-optical four-bit toffoli gate with possible implementation
in solids,” Proc SPIE, vol. 8772, 05 2013.

7. E. A. Gazazyan, G. G. Grigoryan, V. O. Chaltykyan, and D.
Schraft, “Implementation of all-optical toffoli gate in -sys-
tems,” Journal of Contemporary Physics (Armenian Academy
of Sciences), vol. 47, pp. 216–221,Sep 2012.

8. A. Y. Aleksanyan and E. A. Gazazyan, “Realization of the pro-
grammable logical atomic gate,” Journal of Contemporary
Physics (Armenian Academy of Sciences), vol. 53, pp. 205–
211, Jul 2018.

9. E. A. Pogosyan and E. A. Gazazyan, “Programmable quantum
gate operations using qutrit quantum dots,” Optical Memory
and Neural Networks, vol. 32, pp. S396–S401, Dec 2023.

10. A. Aleksanyan, S. Shmavonyan, E. Gazazyan, A. Khanbekyan,
H. Azizbekyan, M. Movsisyan, and A. Papoyan, “Fluorescence
of rubidium vapor in a transient interaction regime,” Journal of
the Optical Society of America B, vol. 37, p. 203, 12 2019.

11. A. A. Sargsyan, A. Y. Aleksanyan, S. A. Petrosyan, E. A. Gazazyan,
A. V. Papoyan, and H. V. Astsatryan, “Prediction of atomic ground
state relaxation rate from fluorescence spectra using machine learn-
ing,” Journal of Contemporary Physics (Armenian Academy of Sci-
ences), vol. 56, pp. 285–290, Oct 2021.

12. F. Sim, E. Budiarto, and R. Rusyadi, “Comparison and analysis
of neural solver methods for differential equations in physical
systems,” ELKHA: Jurnal Teknik Elektro, vol. 13, no. 2, pp.
134–140, 2021.

13. Ascher, Uri M.; Petzold, Linda R. (1998), Computer Methods
for Ordinary Differential Equations and Differential-Algebraic
Equations, Philadelphia: Society for Industrial and Applied
Mathematics, ISBN 978-0-89871-412-8.

14. Atkinson, Kendall A. (1989), An Introduction to Numerical
Analysis (2nd ed.), New York: John Wiley & Sons, ISBN 978-
0-471-50023-0.

15. R. Courant, K. Friedrichs, and H. Lewy, “ ¨Uber die partiellen
differen-zengleichungen der mathematischen physik,” Mathe-
matische Annalen, vol. 100, pp. 32–74, Dec 1928.

16. K. Zubov, Z. McCarthy, Y. Ma, F. Calisto, V. Pagliarino, S.
Azeglio, L. Bottero, E. Luj´an, V. Sulzer, A. Bharambe, et al.,
“Neuralpde: Automating physics-informed neural networks
(pinns) with error approximations,” arXiv preprint
arXiv:2107.09443, 2021.

17. E. Shi and C. Xu, “A comparative investigation of neural net-
works insolving differential equations,” Journal of Algorithms
& Computational Technology, vol. 15, p. 1748302621998605,
2021.

18. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia:
A fresh approach to numerical computing,” SIAM Review,
vol. 59, no. 1, pp. 65–98, 2017.

19. M. Innes, “Flux: Elegant Machine Learning with Julia”, Jour-
nal of Open Source Software, 2018.

20. M. Innes et al., ‘Fashionable Modelling with Flux’, CoRR, vol.
abs/1811.01457, 2018.

21. V. K. Dixit and C. Rackauckas, “Optimization.jl: A unified op-
timization package,” Mar. 2023.

22. C. J. Foot, Atomic physics. Oxford: Oxford University Press,
2007.

23. R. Loudon, The Quantum Theory of Light. Oxford science
publications, Clarendon Press, 1973.

24. [24] D. Petrosyan, H. Astsatryan. “Serverless high-perfor-
mance computing over cloud." Cybernetics and Information
Technologies vol. 22, no. 3, pp. 82-92, 2022.

16

