
Neural Networks vs. Traditional Techniques:  
Differential Equation Approaches in Quantum Gate 

Analysis  

Abstract — The research evaluates the traditional 
numerical algorithms and neural network-based methods for 
solving ordi-nary differential equations. The evaluation covers 
both mathe-matical and machine learning perspectives. 
Practical experi-ments are carried out by implementing neural 
networks and the necessary algorithms using the Julia 
programming language. These experiments highlight 
significant advancements in the realm of quantum 
computing. Additionally, analyzing the effi-ciency metrics of 
solving differential equations with numerical methods versus 
neural networks uncovers intriguing results, which vary 
based on the chosen architecture and network pa-rameters. 

Keywords  — Neural Network, differential equation, quan- 
tum simulation. 

I. INTRODUCTION
Quantum mechanical computing leverages the fundamen-

tal principles of quantum mechanics—including superposi-
tion, entanglement, tunneling, and annealing—to tackle prob-
lems beyond the reach of classical computers [1]. By utilizing 
quantum bits (qubits) and these quantum phenomena, quan-
tum computers have the potential to revolutionize fields such 
as material science, cryptography, and optimization with un-
paralleled efficiency [2, 3]. Notably, quantum computing ex-
cels at processing complex differential equations more effi-
ciently than traditional computers, enhancing the numerical 
solutions for these equations [4]. Integrating neural networks 
(NN) [5] is pivotal in advancing quantum mechanical compu-
ting, as NNs adeptly manage intricate data, optimize parame-
ters, and enhance the precision of quantum simulations. 

Neural networks enable cutting-edge technologies to pro-
cess information at the molecular, atomic, and quantum dot 
levels. These advancements promise to transform cryptog-
raphy and computational systems by enabling irreversible data 
processing, thereby significantly improving information secu-

rity. Implementing of reversible quantum gates [6] and quan-
tum programmable logic gates [7] supports the development 
of sophisticated computational architectures, essential for 
building robust and intricate systems. Quantum gates manip-
ulate qubits through unitary transformations—reversible op-
erations that precisely alter qubit states—crucial for error cor-
rection and quantum communication tasks. 

A notable advancement in quantum computing is the cre-
ation of a three-bit programmable atomic gate on a five-level 
atom, achieved through the adiabatic transfer of atomic level 
populations in an M-system [8]. This adiabatic transfer 
method allows seamless transitions between atomic energy 
levels while maintaining quantum coherence, a vital require-
ment for dependable quantum computations. This innovation 
facilitates the implementation of complex quantum algorithms 
and the realization of practical quantum technologies. Com-
bined with other non-reversible quantum gates [9], this ap-
proach marks a significant progression in the field. 

The study focuses on the numerical solutions of non-sta-
tionary equations governing the density matrix of this five-
level system. Quantum gates play a crucial role in solving 
complex systems of 25 differential equations, enabling a 
deeper understanding and modeling of dynamic processes. 
Specifically, the research examines the relaxation rates of 
ground state levels in rubidium atomic vapor through fluores-
cence spectra analysis, a typical regression task [10]. Rubid-
ium vapor is particularly suited for investigating quantum 
phenomena, atomic clocks, and quantum computing applica-
tions. Both linear and nonlinear machine learning (ML) tech-
niques were evaluated for their effectiveness in processing 
and predicting these physical processes [11]. An optimal re-
gression model was developed, distinguished by its high ac-
curacy and ability to significantly accelerate the modeling of 
critical functional indicators, thereby enhancing the prediction 
and analysis of physical phenomena. 
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The neural network approach for solving differential equa-
tions was successfully implemented using TensorFlow [12], 
addressing both ordinary differential equations (ODE) and 
partial differential equations (PDE) that do not involve com-
plex numbers. The method demonstrated exceptional conver-
gence, highlighting its advantages and significantly reducing 
errors compared to traditional techniques such as Runge-Kutta 
and finite difference methods [13, 14]. Additionally, this neu-
ral approach offers superior numerical stability, avoiding the 
limitations imposed by the Courant-Friedrichs-Lewy condi-
tion [15], and can effectively solve PDEs on very coarse grids.

Among traditional numerical methods [4], neural net-
works [5, 16, 17] stand out as powerful tools for solving dif-
ferential equations. They are capable of modeling complex de-
pendencies and identifying patterns within data. Applying 
neural networks to differential equation solving opens new av-
enues in dynamic system analysis, enabling highly accurate 
approximate solutions and achieving these results with signif-
icantly reduced computational time compared to conventional 
numerical methods.

The article seeks to assess traditional numerical methods 
and NN approaches that handle complex numbers for solving 
ordinary differential equations within a quantum two-level 
system in quantum mechanics. By comparing the effective-
ness of these numerical techniques and NNs, the study high-
lights notable differences in computational accuracy, empha-
sizing the potential of neural networks in addressing intricate 
mathematical challenges, especially in quantum computing. 
These results carry significant implications for future quantum 
physics research, particularly in simulating quantum compu-
tations where conventional methods might restrict the speed 
and precision of data processing.

II. NEURAL NETWORKS FOR SOLVING
ORDINARY DIFFERENTIAL EQUATION

The study concentrates on the design of the neural network 
architecture, including activation functions, optimization al-
gorithms, and training strategies, to ensure precise and effec-
tive system dynamics modeling. The network architecture is 
meticulously crafted to manage the complexities of the quan-
tum two-level system under investigation, as depicted in Fig. 
1. It comprises an input layer, two hidden layers, and an output
layer. The input layer features a single neuron, representing
the one-dimensional time input characteristic of dynamic sys-
tems. Each hidden layer contains 64 neurons, providing ample
capacity to handle the network’s information processing de-
mands. The output layer consists of four neurons, each di-
rectly corresponding to the four components of the system’s
state vector, ensuring a clear and direct relationship between
the network’s output and the physical states of the quantum
system.

Fig. 1: NN Model Architecture

The hidden layers use a complex sigmoid function for ac-
tivation, which is crucial for handling complex-valued inputs 
and outputs. By integrating the real and imaginary compo-
nents of complex numbers, this function allows the network 
to accurately simulate the subtle and intricate dynamics char-
acteristic of quantum mechanical systems.

Network optimization employs the Adam optimizer [19, 
20], renowned for efficiently navigating complex optimiza-
tion landscapes and achieving rapid convergence. The learn-
ing rate is set at 0.01 to balance the speed and stability of the 
training process.

The training regime adopts a stochastic approach, introducing 
randomness in selecting data points to robustly mitigate the risk of 
overfitting. This randomness prevents the model from excessively 
memorizing the training data, enhancing its generalization capabil-
ities and ensuring adaptability to various scenarios within the quan-
tum system. The training dataset comprises 300 carefully selected 
points, balancing computational efficiency with the complexity re-
quired to model the dynamic behaviors adequately. Additionally, 
30,000 boundary condition points are included to ensure the net-
work rigorously adheres to the physical constraints and boundary 
conditions essential for obtaining valid and meaningful solutions.

Network parameters are initialized using the kaiming_nor-
mal() function [19, 20], which scales the weights based on a 
calculated standard deviation. This method maintains con-
sistent variances across neuron inputs and outputs, preserving 
the integrity of signal propagation through the network layers. 
Such initialization is particularly effective for networks han-
dling complex values, as it helps avoid issues like vanishing 
or exploding gradients.

Before training, additional setup steps are performed using 
Lux.setup(rng, chain) [19, 20]. These steps involve crucial tasks 
such as parameter initialization and system configuration, ensuring 
that the network is optimally prepared for the training phase. This 
setup is vital for aligning the network’s operational parameters with 
its architectural and strategic goals, thereby establishing a solid 
foundation for efficient learning and accurate performance in com-
plex simulation tasks.

In addressing complex-valued Ordinary Differential Equations 
(ODEs), the study employs the NNODE approach. This method 
leverages the flexibility and adaptability of neural networks to ap-
proximate solutions to differential equations that are otherwise 
challenging for traditional numerical solvers. Integrating neural 
networks into the framework of differential equations offers a 
promising avenue for tackling problems involving complex-valued 
systems and intricate dynamics.
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The NNODE method utilizes a neural network architec-
ture, comprising multiple layers, to represent the solution to 
an ODE. The network receives the independent variables of 
the ODE (e.g., time) as inputs and generates predictions for 
the dependent variables (e.g., state vectors). A loss function, 
derived from the given differential equation, is defined to train 
the network and optimize its parameters (weights and biases). 
This loss function assesses how well the neural network’s out-
put satisfies the ODE across a range of input values. 

The essence of the NNODE approach lies in its iterative 
training process, wherein the network minimizes the discrep-
ancy between its predicted solutions and the true solutions of 
the ODE. The training involves three key components: the op-
timization algorithm [21], the loss function, and the training 
strategy. Various strategies can be employed to determine the 
points at which the ODE is evaluated during training. Tech-
niques such as stochastic training introduce randomness in the 
selection process, thereby enhancing the network’s generali-
zation capabilities and preventing overfitting to specific data 
points or patterns. 

The L2 loss function (1), commonly used in training neu-
ral networks with the NeuralPDE.jl package, is calculated 
based on the squared L2 norm between the network’s predic-
tions and the target values: 

                 (1)    

where  is the target value,  is the corresponding predicted 
value, and  is the number of observations. 

III.  NEURAL NETWORKS FOR QUANTUM 
SIMULATIONS 

The study investigates the dynamics of a two-level quan-
tum system, which is distinguished by its capacity to exist in 
a superposition of two distinct quantum states. These systems, 
referred to as qubits, are fundamental for comprehending the 
principles of quantum mechanics. To analyze their behavior, 
mathematical methods based on linear differential equations 
in two-dimensional spaces are employed. Specifically, the op-
tical Bloch equations [22, 23] are utilized to model the dynam-
ics of atoms and quantum bits under various external field in-
teractions. These equations incorporate the effects of field in-
teractions alongside quantum mechanical properties such as 
coherence and superposition. 
The optical Bloch equations governing the system are ex-
pressed as follows: 

            (2) 

where the matrix elements ij represent the density opera-
tor of the system,  denotes the Rabi frequency,  is the nat-
ural decay rate of the excited state, indicating how swiftly the 
system returns to its ground state in the absence of external 
disturbances.  describes the transverse decay rate, capturing 
the effects of environmental noise and interactions that cause 

the degradation of quantum information stored within the sys-
tem.  is the detuning parameter, representing the difference 
between the external field frequency and the natural frequency 
of the quantum transition. 

Tables 1, 2, and 3 provide detailed data on the values of 
the loss function (L2) and correlation coefficients when solv-
ing differential equations using neural networks (NN) for var-
ious parameters  and . The loss function values reflect the 
error between predicted and actual solutions, while the corre-
lation coefficients measure the similarity between the pre-
dicted and actual quantum states. Varying the values of  and 

 allows for the examination of how different parameters af-
fect the accuracy and correlation of neural networks in quan-
tum simulations. 

  = -1  = 0  = 1 

Loss function (L2)(2) 0.0000875 0.000805 0.0000869 

The correlation coefficients 
between  and  

0.99829 0.9993768 0.9990431 

The correlation coefficients 
between  and  

0.99834 0.9994245 0.9990781 

Table 1  For =3  and  loss function and correlation  

  = -1  = 0  = 1 

Loss function (L2)(2) 0.0003614 0.00028854 0.000315279 

The correlation coeffi-
cients between  and 

 

0.99613571 0.99775968 0.996612334 

The correlation coeffi-
cients between  and 

 

0.99637116 0.99783555 0.996645611 

Table 2  

  = -1  = 0  = 1 

Loss function (L2)(2) 0.001605311 0.001269584 0.0012727 

The correlation coeffi-
cients between  and 

 

0.989457997 0.990168838 0.9909499 

The correlation coeffi-
cients between  and 

 

0.989868546 0.990391949 0.9910183 

Table 3  
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These data enable the assessment of the accuracy and effi-
ciency of NN methods compared to traditional numerical 
methods, such as the Runge-Kutta method. The loss function 
(L2) is used to measure the accuracy of the neural network's 
predictions relative to benchmark values, where low values of 
the loss function indicate high prediction accuracy. In the pre-
sented tables, the loss function values vary depending on the 
parameters  and . Correlation coefficients are used to eval-
uate the degree of correspondence between the values ob-
tained using NNs ( p and p) and the values obtained by 
traditional numerical methods ( n and n). High correlation 
coefficients indicate a strong relationship between the two 
data sets and confirm that neural networks can accurately 
model the behavior of complex systems.

The obtained data demonstrate the high accuracy of NN 
methods in solving differential equations and show a strong 
correspondence with the results of traditional numerical meth-
ods. This indicates that neural networks are a reliable tool for 
modeling complex quantum systems, providing high accuracy 
and efficiency compared to classical approaches.

IV. CONCLUSION

This work presents an in-depth comparative analysis of al-
gorithms from traditional numerical methods and methods us-
ing NNs that handle complex numbers and the choice of acti-
vation functions for solving ordinary differential equations in 
quantum computing. Experiments were conducted during the 
study, demonstrating the efficiency of both approaches de-
pending on the characteristics of the architecture and network 
parameters. The efficiency metrics of numerical methods and 
NNs indicate significant differences in accuracy and compu-
tational speed, highlighting the potential of NNs in solving 
complex mathematical These findings could have substantial 
implications for future research in the fields of physics and 
engineering, where traditional problems, especially in the 
field of quantum computing. Methods may limit the speed and 
accuracy of data processing.
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