
Optimizing the Mid-Size Microservice
Architecture Ecosystem

Abstract — Starting a new IT project requires careful
planning, including understanding the business, analyzing data,
and making smart decisions about how to build the project.
While many are drawn to using microservices for their
scalability, they can be complex, costly, and time-consuming. On
the other hand, traditional monolithic architectures are simpler
but can be hard to scale and maintain as the project grows.

A good compromise is the modular monolith approach. It
breaks the project into smaller parts with clear boundaries,
making it easier to manage and reuse code. By using a simple
communication method between these parts, called RPC-like
communication, we can keep things efficient and avoid
complicating the developers' work with networking details. If
needed, we can later transition smoothly from a modular
monolith to microservices, saving time and avoiding many bugs.

Overall, choosing practical architectural approaches like
modular monoliths helps keep projects straightforward
while preparing them for future growth and upkeep.

Keywords — Microservice architecture, optimization,
monolith architecture.

I. INTRODUCTION
Planning modern IT projects requires hard
work. Understanding business domain, making analytics,
choosing relevant technical project architecture are the key
concepts of IT project management. The work becomes
harder when the team is trying to find the best
architecture solutions while dealing with business
problems. Most of the time modern architect guru’s advice
to use microservice architecture, but is it really a good idea?

II. WHY MICROSERVICES ARE NOT THE
BEST OPTION AT THE BEGINNING.

Even though microservices are one of the most scalable
architectural solutions, but as always great power comes with
great responsibilities. While it is a practical choice, it has
many disadvantages as well: Technical complexity, high cost,
time intensive.
When talking about technical complexity, it refers to
following problems:

Complexity in communication: microservices
should communicate to each other, which
introduces complex APIs, network congestion,
latencies and so on;
Data Management: managing data consistency
across services and handling transactions among
these processes can be challenging;

Service Discovery: Keeping track of numerous
services and instances for service discovery can be
complex in a microservices architecture;
Security: Ensuring secure communication between
services and managing the increased attack surface
due to exposed APIs requires more work;
Monitoring and Troubleshooting: Monitoring and
troubleshooting a microservices-based application
can be more complex than a monolithic one due to
the different programming languages and
environments used for each service.

According to these problems, using microservice architecture
from the beginning of the project, especially in startups, can
cause fatal issues and most probably the project will not see
light of the sun.
“You shouldn't start a new project with microservices, even if
you're sure your application will be big enough to make it
worthwhile.” - Martin Fowler.

III. PROBLEM WHILE WORKING
WITH MONOLITH

Another common architectural approach can be “good old”
monolith. monolith refers to a software application that is
built and deployed as a single unit. Therefore, all the
components of the application, including the user interface,
business logic, and data storage, are tightly integrated and run
in a single process. This solution is not as bad as modern
developers say. It gives us simplicity because all components
are part of a single codebase. Most of the time, it is more
performant due to avoiding additional network
communication. Debugging and monitoring are also
simplified when using single process.
Nothing is perfect, so that monolithic architecture also has
disadvantages:

Scalability: Monolithic applications can become
difficult to scale, as the entire application needs to be
scaled, regardless of the specific component that
requires more resources.
Deployment: Deploying a monolithic application can
be time-consuming, as the entire application needs to
be built, tested, and deployed as a single unit.
Maintenance: As the application grows, it can become
more difficult to maintain and update, as changes to one
component can potentially affect other components,
leading to unintended consequences.

At the end of the day, we get a big giant codebase, which hates
changes, and any attempt causes big trouble and pain to the
developers.

Nikoloz Katsitadze
University of Georgia

Tbilisi, Georgia
e-mail: n.katsitadze@ug.edu.ge

University of Georgia
Tbilisi, Georgia

e-mail: chachavazuka@gmail.com

https://doi.org/10.62343/csit.2024.6

21

IV. THE GOLDEN EDGE SOLUTION –
MODULAR MONOLITH

A modular monolith is an architectural approach that divides
an application's domain into smaller, more manageable
components or modules, providing a balance between
monolithic and microservices architectures.
The project is segmented, and each piece contains individual
features and business logic. This kind of approach promotes
high cohesion and low coupling. Modules in a modular
monolith communicate through well-defined interfaces,
which refers to lose coupling and independent development of
functionalities.
Benefits:

High Reusability: Logic encapsulation enables high
reusability while maintaining data consistency and
simple communication patterns.
Simplicity: Easier to manage than multiple
microservices, keeping infrastructural complexity
and operational costs low.
Easy to migrate modular monoliths can be separated
without much effort. This benefit can be attractive to
startups, who seek simplicity and future improvements.

Challenges:
Limited Technological Diversity: Modular monoliths
restrict the use of diverse technologies and languages
compared to microservices due to executing code
within a single runtime.
Scalability Constraints: Scaling a modular monolith
can face limitations as the entire application needs to
be scaled together, potentially leading to inefficient
resource utilization.

V. MODULAR MONOLITH INTERNALS
It is simple to imagine how modules are defined in the project.
Each module has its own project layers such as domain,
application, infrastructure and so on. But what happens when
communication between modules is required. There are
several approaches, such as sending data through a service bus
or declaring module interfaces.
According to my experience, using a service bus gives us a
clear border between modules and transferring modular
monolith into microservices requires less effort. But it mostly
misses the main goal, which is to build a project simply.
Service bus is an additional infrastructure unit, and it increases
project complexity.
Using interface is easy and performant because direct function
calls are always faster than network calls. Unfortunately,
standard interface implementation still pairs modules tightly.
But what about using the rpc approach? especially grpc which
is well supported by Google. RPCs always look like a normal
function, even thou they make network calls. What if we use
RPC-like structure to call directly referenced modules. When
using this approach developer is step ahead and if in the future
the project is scaled, fake RPC functions will be replaced by
real RPC calls.
It is fact, that transferring from fake RPCs to real RPCs is not
straightforward, but this process is easy. According to my
bank experience building projects for experimental products
using modular monolith and RPC approach gives better
development performance, because dev team members do not
need to worry about sending messages, network failures and

so on. The development time was mostly reduced about 30%-
40%, which is pretty much attractive for businesses people
and product managers.

VI. SPEED DIFFERENCE BETWEEN MONOLITH
AND MODULAR MONOLITH WHILE

SEPARATING INTO MICROSERVICES
Transferring into microservices became a smooth process.
The transferring time was also reduced by 50%-70% and not
many bugs were developed during this period. Modules are
easily decomposed as a bunch of units. Units became docker
containers and were deployed in the cloud.

1

The following chart displays the development performance of
two real financial projects. According to the results, using
modular monolith significally reduces the development time
compared to microservices. This big difference is caused by
avoiding additional infrastructural components.

VII. SUMMARISE
As reality has shown us, using the most advanced
architectural approaches for newly started projects is not
good decision. Choosing easy structures is the best way to
build new digital products. But developers must be wise
and plan the project like this so that in the future it will
be easily maintainable scalable and reliable. Modular
monoliths are one of the best options to achieve this goal.

REFERENCES

1. Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. First edition.
Martin Kleppmann, 2017

2. System Design Interview – An insider’s guide volume 1 – An
insider's guide. Alex Xu, 2020

3. System Design Interview – An insider’s guide volume 2 – An
insider's guide. Alex Xu, Sahn Lam 2022

4. Domain-Driven Design: Tackling Complexity in the Heart of
Software 1st Edition. Eric Evans 2003

5. Building Microservices 1st Edition – Sam Newman 2015

22

