
I. INTRODUCTION
II. FRAMEWORK

Let Θ respresent the set of all possible solutions for a task with

a given function d : Θ2→ R, which have the property

∀a, b ∈ Θ : a = b ⇒ d(a, b) = 0. Let θ ∈ Θ denote an ideal

solution of the task. Let us define the quality of the result r ∈ Θ
as a value inversely related to the value of the function d(r, θ)
(i.e. the lower the value of d(r, θ) the “closer” the result r is to

an ideal result θ). The value d(r, θ) will be referred to as an

“error” of the result r.

Let us consider a family of anytime algorithms which imply

the sequence of process stages with numbers n = 1, 2, . . ..
Given a certain fixed but unknown θ we observe a sequence

of states S1, S2, . . . , Sn, . . . where ∀i : Si = Si(θ) ∈ S.
Anytime algorithm R on each stage n takes as an input a state

Sn, and on each stage n the algorithm could be stopped with a

result Rn(S1, . . . , Sn) ∈ Θ. The quality of the result Rn, i.e.
d(Rn(S1, . . . , Sn), θ) is unknown during the process, however

we will assume that the algorithm R solves a problem of

minimizing the total error on some set of

input data D⊂ S
n×Θ:∑

(S1,...,Sn,θ)∈D

d(Rn(S1, . . . Sn), θ) → min
R

. (1)

Let us now consider two separate anytime algorithms R and

Q, both solving the same problem (1). Let us assume that both

algorithms during their operation receive the same sequence of
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input states S1, S2, . . . , Sn, however their results Rn and Qn

on n-stage could differ. We can state a problem of selecting a

result Mn ∈ {Rn, Qn}, Mn = Mn(R1, . . . , Rn, Q1, . . . , Qn)
such as to minimize the total error.

Optimal selection of Mn consists of selecting a result with

a minimal error, i.e.:

Mn =

{
Rn, d(Rn, θ) < d(Qn, θ),
Qn, d(Rn, θ) ≥ d(Qn, θ),

(2)

however in order to solve this problem one needs to estimate

the error difference d(Rn, θ)− d(Qn, θ).
The general framework of the approach proposed in this

paper consists of three approximations:

1) The approximation of the absolute value of the error

difference |d(a, θ)−d(b, θ)| for a pair of results a, b ∈ Θ;

2) Approximation of d(Ri, θ) except for a additive con-

stant, for a given sequence of anytime algorithm results

R1, R2, . . . , Rn;

3) Approximation of the difference between the additive

constants for two sequences of anytime algorithm re-

sults, resulting in a hypothesis of selecting the best result

out of two.

A. Approximation of the absolute value of the error difference

For two elements a, b ∈ Θ instead of trying to estimate

d(a, θ)−d(b, θ) we will try to approximate the absolute value

of this difference |d(a, θ) − d(b, θ)|. Let us consider a non-

negative function g : Θ2 → R complying to the property

∀a, b ∈ Θ : a = b ⇒ g(a, b) = 0. Let us assume that the value

of g(a, b) approximates the absolute value of the difference

between error levels of a and b:

g(a, b) ≈ |d(a, θ)− d(b, θ)|. (3)

As an example of such approximation, for a certain metric

function d we could construct the function g(a, b) as a

function proportional to d(a, b) with minimizing a squared

approximation error for a given training dataset Dg ⊂ Θ3:

g(a, b) = α · d(a, b) :∑
(a,b,θ)∈Dg

(|d(a, θ)− d(b, θ)| − α · d(a, b))2 → min
α∈[0,1]

. (4)

B. Approximation of error except for a constant

Given a sequence of anytime algorithm results

R1, R2, . . . , Rn for a problem with an ideal solution θ
let us construct an approximation of the error d(Ri, θ) down

to an additive constant, i.e. construct r1, r2, . . . , rn such that:

∀i ∈ {1, . . . , n} : d(Ri, θ) ≈ ri + γ,
with rn = 0.

(5)

Given an approximation of the absolute value of the error

differences, let us construct r1, . . . , rn by solving the follow-

ing problem:

n−1∑
i=1

n∑
j=i+1

(|ri − rj | − g(Ri, Rj))
2 → min

r1,...,rn, with rn=0
. (6)

The problem (6) is easily solvable if for each pair (ri, rj)
the sign of the different ri−rj is known or could be assumed.

In general, when anytime algorithms are considered typically

it is assumed that the results of the algorithm always improve

over time (or at least, in a weaker definitions, “are well-

behaved over time”). Thus, if we assume that the results of the

algorithm improve over time, we can assume that ri − rj > 0
for any i < j, and thus easily solve the problem (6).

It is also worth to note that if for the approximation of the

absolute value of error different we use a linear function of the

distance (4), then with any α > 0 the estimations r1, . . . , rn
will be the same except for a multiplicative constant, and if

the estimations will be constructed in form ri = α · r̂i, then

simply the distances d(a, b) can be used instead of g(a, b).

C. Approximation of the error difference

Let us consider two sequences of solutions for a problem

with an ideal result θ: the sequence R1, . . . , Rn of the results

of the algorithm R and the sequence Q1, . . . , Qn of the results

of the algorithm Q. Let us assume that the results of both

algorithms improve over time, thus by solving the problem

(6) we obtain r1, . . . , rn and q1, . . . , qn such that:

∀i ∈ {1, . . . , n} : d(Ri, θ) ≈ ri + γR,
d(Qi, θ) ≈ qi + γQ.

(7)

Let γ = γR−γQ and let us find γ by solving the following

problem:

n∑
i=1

n∑
j=1

(|ri − qj + γ| − g(Ri, Qj))
2 → min

γ
. (8)

By enumerating all possible combinations of signs under

the absolute value bars in (8) we can find all solutions for

this problem in polynomial time. Given a found γ we can

now make an algorithm selection decision, by selecting the

result Mn ∈ {Rn, Qn} on stage n by supplying the obtained

approximation to the original definition (2):

Mn =

{
Rn, rn − qn + γ < 0,
Qn, rn − qn + γ ≥ 0,

(9)

moreover, if the approximation ri and qi was constructed given

rn = qn = 0 then it is enough to simply compare γ with zero.

It is important to note that the task (8) could have many

solutions. For example, if ∀i, j ∈ {1, . . . , n} : Ri = Rj∧Qi =
Qj and g(Rn, Qn) > 0 then ∀i ∈ {1, . . . , n} : ri = qi = 0
and the solution for the problem (8) is γ = ±g(Rn, Qn),
which makes the choice (9) impossible. In order to reduce

ambiguity, one can set up a fixed policy to find the maximal

value of γ which minimizes (8), thus favouring the algorithm

Q in ambigious cases.

As in the previous subsection, it is worth to note that if

in both approximations a linear function (4) is used as g(a, b)
with the same α > 0 then by setting ri = α · r̂1, qi = α · q̂i and

γ = α · γ̂ we can find γ̂ with the described algorithm simply

using the distances d(a, b) instead of the function g(a, b).
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III. EXPERIMENTAL EVALUATION

For experimental evaluation of the proposed approach let

us consider the task of the recognition of text string (text

field o f a d ocument) i n a v ideo s tream. L et Θ b e a s et of

all possible text strings, θ – a “correct” text field recognition

result. Let the algorithm R denote an algorithm of selecting

a single per-frame result with maximal focus estimation score

[5], and the algorithm Q represent the modification o f the

algorithm ROVER [6], [7] to combine per-frame recognition

results.

Normalized Levenshtein distance [8] will be used as d(a, b),
and we will construct an approximation g(a, b) as a linear

function of d(a, b) (4). As was mentioned before, the results

of the estimations does not actually depend on α in (4), thus

we will simply use the approximation g(a, b) = d(a, b).
As the original dataset the documents from MIDV-500

dataset [9] were used. By recognizing the text fields using

the system [10], 691 text field r ecognition r esult sequences

were obtained. On 491 sequences both the results of R and Q
were improving over time on all stages of the process, on 116
– only the results of R, on 72 sequences – only the results

of Q, and on the remaining 84 sequences neither the results

of R nor Q were strictly improving over time throughout the

stages of the process.
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Fig. 1: Error plot for text field recognition in video stream (all

sequences). Horizontal axis – frame number, vertical axis –

mean error.

Figure 1 shows the dynamics of text field recognition error

on all sequences of the dataset. Red and black show the

results of the algorithms R and Q respectively, solid green

line visualizes an “ideal selection” of the best result (2) (to

which a correct result is known). Dashed green line represent

the result of the proposed approach with an ideal selection of

signs of the differences ri−rj in (6). Blue dashed line show the

result of the proposed method in a computable scenario (thus,

having no access to ideal signs of the differences ri − rj and

the ideal result), which assumes that R and Q always improve

over time.

The selection of the best result using the proposed method

allows to reduce mean error (relative to the best of the two

algorithms) for sufficiently low amount of frames (n < 13). It

is worth noting that with ideal selection of signs of the

differences ri− rj in (6) the selection of the algorithm using the
proposed method almost corresponds to an ideal selection.

Figure 2 shows the dynamics of the text field recognition

error on the four subsets of the dataset. It can be noted

that on the sequences where both R and Q strictly improve

over time the proposed method of selecting the best result is

almost indistinguishable from ideal choice. The highest error is

observed on the subset where only Q (which has the highest

overall mean quality) improves over time, as the method R
not only does not improve over time on this subset, but also

reaches the highest levels of error.

IV. CONCLUSION

As it can be seen from the experimental evaluation, the

proposed method could show promise in some practical ap-

plications, however the most crucial problem is deal with the

fact that on real data the combination algorithms not always

improve over time. If that were always the case, a much

simpler method would be to simply select the algorithm which

is most different to the known common result (which is the

result on the first frame, if the target problem is text field

recognition in a video stream).

However, the proposed method achieves almost optimal

selection if the sign of the error difference becomes known.

Thus, if there exists some other problem-specific method of

determining signs of the differences ri − rj in (6), then the
proposed approach may yield good results.

As a function g(a, b) which approximates the absolute value

of the error difference another type of function could be used

(or trained) which would take not only the two results Ri, Rj

or Ri, Qj , but all the available information S1, . . . , Sn.

Using the proposed indirect approach it is difficult to solve

the problems (6) and (8) simultaneously, since the absolute

value bars in (8) has to be eliminated in a different way for

different solutions of (6). That is why in the provided general

scheme we rely on an assumption of known signs which allow

to eliminate absolute value bars in (6) (e.g. by assuming that

the algorithms strictly improve over time).

The solution to the problem (6) can also potentially be used

to solve the stopping problem for the anytime algorithm R [3],

[4]: the optimal stopping implies the estimation of the expected

difference d(Rn, θ) − d(Rn+1, θ), which can try to predict by

estimating all d(Ri, θ)− d(Ri+1, θ) in the form ri− ri+1.
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(a) Both R and Q improve over time
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(b) Only R improves over time
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(c) Only Q improves over time
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(d) Neither R nor Q improve over time

Fig. 2: Error plot for text field recognition in video stream (subsets of sequences). Horizontal axis – frame number, vertical

axis – mean error.
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