
Abstract An analogue of a neural network, the number of
layers and the number of cells in which may be changed during
its retraining is suggested in the paper. The main instrument
for constructing such a network is extraction of maximal
common properties of pairs of objects in the training set and
of that ones used for retraining. The degree of coincidence of
a recognized object with the one presented in the training set
may be calculated using their maximal common properties.
Computational complexities of such a network construction,
recognition process and the network retraining are proved.
A brief description of a similar network proposed by the
author earlier for complex structured objects described using
predicate calculus is presented. The analysis of comparison
of computational complexity of a complex structured object
recognition with various methods of their description is given.

Keywords neural network; maximal common property    
of objects; degree of coincidence; computational complexity.

I. INTRODUCTION

The origins of the appearance of artificial neural networks

lie in the works of F. Rosenblatt, dedicated to the creation of a

perceptron, a machine for solving pattern recognition problems

[1]. However, the significant disadvantages of the perceptron

led to the creation of other models for solving such problems.

One of the most common models currently is a neural network.

An artificial neuron is only a model of a neuron in a living

organism. Therefore, it will be called a cell below. At the same

time, the contents of such a cell may vary depending on the

way the problem is formalized.

When creating a modern artificial neural network, the

researcher sets its configuration in advance: the number of

network layers and the number of cells in each layer. This does

not correspond to how a neural network is built in the brain

of a living organism, in which new neurons are added during

the learning process, some connections are broken and new

ones are formed. Besides, classical artificial neural networks

have the disadvantage that unpredictable ”outliers” sometimes

occur while recognition new objects. Results that are poorly

explained from a theoretical point of view.

In this regard, various modifications of artificial neural

networks began to be developed.

Overfitting is a serious problem in such networks. For

example, a dropout network was suggested in [2] to overcome

such a problem. To detect regularities in datasets, polynomial

neural networks were developed [3], [4]. Due to the huge

volumes of processed data, fuzzy neural networks have found

their application.

In this paper, it is proposed to construct an analogue of a

neural network, the number of layers and the number of cells

in which may be changed during its retraining.

The basis for the construction of the proposed networks is the

concept of the maximum common property (MCP) of objects. This

concept was introduced earlier by the author for complex structured

objects described using predicate formulas [5]. The problem of

finding MCP of such objects has expo-nential complexity [6].

For objects described in the terms of binary or finite-valued

features, the problem of finding MCP is a polynomial one.

Such a difference in computational complexity depending on

the chosen description language is discussed in the Discussion

section of the paper.

II. PRE-TRAINING THE NETWORK FOR OBJECTS
DESCRIBED BY FINITE VALUED FEATURES

A. Setting of Problem

Let Ω be a set (potentially infinite) of objects. A set of

features p1, . . . , pn that define the description of an object

ω from Ω in the form of a string of values of these features

α = (α1, . . . , αn) is defined for objects under study. A training

set (TS) {ω1, . . . , ωK} of objects from Ω with descriptions

αk = (αk
1 , . . . , α

k
n), k = 1, . . . ,K is given.

It is required to construct a network that gives the answer

“YES” for objects from TS. If an object is absent in TS we

can not guarantee its correct recognition. Fuzzy recognition

of such an object consists in calculation of maximal degree of

coincidence with one of the objects from TS.

B. Important Definitions

Definition 1. The maximal common property (MCP) of
objects with descriptions αk = (αk

1 , . . . , α
k
n) and αm =

(αm
1 , . . . , αm

n ) is a string of the form αkm = (αkm
1 , . . . , αkm

n ),
where

if αk
i 
= αm

i then αkm
i = ∗,

if αk
i = αm

i then αkm
i = αk

i .

C. Initial Network Training

Network cells with zero out-degree contain descriptions of

objects from TS.

Artificial Neural Networks that Change 
their Configuration

Tatiana Kosovskaya
Sankt-Petersburg State University

Sankt-Petersburg, Russia
kosovtm@gmail.com

27



(10011)C1
1 (11001)C1

2 (00011)C1
3

(1 ∗ 0 ∗ 1)C2
1 (∗0011)C2

2 (∗ ∗ 0 ∗ 1)C2
3

(∗ ∗ 0 ∗ 1)C3
1

Fig. 1. The result of pairwise extractions of MCPs.

For each pair of objects from the TS αk = (αk
1 , . . . , α

k
n)

and αm = (αm
1 , . . . , αm

n ) we find their MCP αkm. Cells with

αkm and αk and αm are connected by oriented edges. If some

pairs of objects have the same MCPs, then their corresponding

cells are identified.

Repeat the process with the already extracted MCPs. At the

same time, if on the lth repetition we received the same MCP

that was received earlier, then the corresponding cells of the

network are identified.

The process will stop as the MCP lengths decrease.

D. Computational complexity of initial network training

Let K be the number of objects in the TS.

When the MCPs for pairs of descriptions are found for the

first time, K1 = K(K−1)
2 extractions of MCP are produced.

When the MCP for pairs of descriptions obtained on the

l−1-th layer is found for the l-th time, no more than
Kl(Kl−1)

2
MCP extractions, each of which requires linear of less (at least

by l) than n steps. That is, the l − 1-th extraction requires

O(K2ln) steps.

At the same time, l does not exceed n. Thus, the to-

tal number of steps of initial network training will be

O(
∑n−1

l=1 K2ln) = O(K2n).
The resulting estimate is very large and achievable.

E. Example of initial network construction

Let the objects be described by five binary features and a

TS of three elements with descriptions (10011), (11001) and

(00011) is given.

According to the described above algorithm the obtained

network has the form presented in Figure 1.

The cells C2
3 and C3

1 must be glued because they contain

the same MCP. The result of gluing the cells C2
3 and C3

1 is

presented in Figure 2.

1

It must be noted that now we can not say what is the number

of level to which the cell C3 belongs.

III. RECOGNITION PROCESS

Obviously, such a network can precisely recognize only such an

object whose description coincides with the descrip-tion of some

object from the TS. The process of such a recognition for an

object with the description (11011) is presented in Figure 3.

Let an object (which was previously absent in the TS) with the

description α= (α1, . . . , αn) be presented for recognition.

(10011)C1
1 (11001)C1

2 (00011)C1
3

(1 ∗ 0 ∗ 1)C2
1 (∗0011)C2

2

(∗ ∗ 0 ∗ 1)C3
1

Fig. 2. The result of gluing the cells C2
3 and C3

1 .

(10011)C1
1 (11001)C1

2 (00011)C1
3

×

(1 ∗ 0 ∗ 1)C2
1 (∗0011)C2

2

×

×

(∗ ∗ 0 ∗ 1)C3
1 (11011)

Fig. 3. Recognition of an object with description presented in TS.

At each check of whether the cell contents match its

description, in case of a negative result, the degree of their

coincidence degC is calculated in the cell C. The degree

of an object description coincidence with the contents of a

cell is the ratio of the number of matched values to the

length of the contents. Note that the length and match of the

contents is calculated without taking into account the number

of occurrences of the ∗ symbol. For example, if the description

of a recognized object is (10001) and the contents of a cell

C is (∗0011) then degC = 3
4 . For a cell C ′ with the contents

(1 ∗ 0 ∗ 1) degC′ = 1.

Why do we calculate the degree of coincidence in the

intermediate cells? It is not necessary. But it can allow us

to make a traversal of the network beginning with the cells

with the largest degree of coincidence.

Let an object with the description (10001) be presented for

recognition. This object was absent in the TS.

The process of recognizing an object with a description

(10001) that was absent in TS is shown in Figure 4.

degC1
1
= 3

5

(10011)C1
1

degC1
2
= 4

5

(11001)C1
2

degC1
3
= 1

5

(00011)C1
3

degC2
1
= 1

(1 ∗ 0 ∗ 1)C2
1

degC2
2
= 3

4

(∗0011)C2
2

degC3
1
= 1

(∗ ∗ 0 ∗ 1)C3
1 (10001)

Fig. 4. Recognition of an object with description absent in TS.
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A. Computational complexity of recognition process
Since the process of recognition of an object is reduced to

the graph traversal from the root cells to the leafs comparing at

each cells of strings with the length no more than the number

of features, the estimate (very rough) for the number of steps

of the recognition process will be

O((N +M)n),

where N is the number of cells in the network, M is the

number of edges in the network (M < N2), n is the number

of features, in terms of which the description of the object is

obtained.
But if the recognized object was presented in TS then its

recognition will be done in O(h · n) number of steps, where 
h is the “height” of the network. Since h < n, this bound is

O(n2).

IV. NETWORK RETRAINING

An already constructed network can be retrained on a new 
object with the description α = (α1, . . . , αn), about which it 
is known that the network should give an answer “YES”. To 
do this, it is enough, firstly, to find the MCP of  the presented 
object with the contents of the leafs. Secondly, to find the MCP 
of the contents of newly received cells with the contents of 
the old ones. And finally, to glue cells with the same contents.

As a result of this process, new cells may appear in the 
network, and both the number of layers and the number of 
cells in the network may be changed.

A. Computational complexity of network retraining
Let N be the number of cells in the network before retrain-

ing, N0 be the number of leafs, N1 be the number of cells

having oriented edge ending in leafs, ..., Nh be the number of

roots. Note, that h < n and N0 +N1 + · · ·+Nh = N .
The first MCP extractions from the description of a new

object and the contents of leafs requires N0n steps. These

extractions can give no more than N0 new cells.
Next extractions can require N1 · N0 · n, N2 · N1 · N0 · n,

..., Nh . . . N2 ·N1 ·N0 · n steps. The total number of steps is

O(Nh . . . N2 ·N1 ·N0 · n).
So, we have an exponential upper bound for network retrain-

ing number of steps. For example, if N1 = · · · = Nh = N
n

then computational complexity is O((Nn )n).

V. NETWORK FOR COMPLEX STRUCTURED OBJECTS

The idea of fuzzy neural network that changes its configura-

tion came to the author while investigating complex structured

object recognition. It is convenient to describe such objects in

the terms of predicate formulas [7], [8]. In such a case, recog-

nition problems turn out to be NP-complete or NP-hard [6]. To

decrease computational complexity of algorithms solving such

problems, the author earlier has introduced notions of level

description of objects, networks changing their configuration

[9] and fuzzy logic-predicate networks [5].
This section will give a brief description of this approach.

Then the difference in computational complexity of the two

approaches will be discussed in the Discussion section.

A. Problem setting

Let an investigated object ω be a complex structured object,

which is presented as a set of its elements ω = {ω1, . . . , ωt}
and is characterized by predicates p1, . . . , pn. These predicates

define some properties of its elements or relations between

them. The description S(ω1, . . . , ωt) of the object ω is a set

of all constant literals (atomic formulas or their negations)

with predicates p1, . . . , pn which are true for ω.

The set of all objects Ω is divided into K classes Ω =
Ω1 ∪ · · · ∪ΩK . Formula Ak(xk) have the form of disjunction

of elementary conjunctions and is true if ω ∈ Ωk.

The recognition of ω consists in checking

S(ω) ⇒ ∃xk �=Ak(xk). (1)

To denote that there exist distinct values for variables from

the list of variables x the notation ∃x �=Ak(x) is used.

This is an NP-complete problem. Depending on an algo-

rithm searching for the values of xk in (1), computational

complexity is exponential on the number of literals in Ak(xk)
or on the number of arguments in it [6].

If we need not only to check the formula (1), but to find

values for xk then it becomes NP-hard. Nevertheless, both

an exhaustive search algorithm and an algorithm based on

derivation in predicate calculus not only answer the question

“if their exists?” but find values for xk.

B. Level description of classes

Definition. Elementary conjunction R(z) is called an MCP
of two elementary conjunctions A(x) and B(y) if it is their
maximal common up to the names of arguments sub-formula.

Instead of the term “common up to the names of arguments

sub-formula” the term “isomorphic” is used in [5].

While MCP extraction for objects described by a binary (or

multi-valued) string is a polynomial-in-time procedure, MCP

extraction for complex structured objects represented as a set

of its elements and described by a predicate formula is NP-

hard problem [6].

To decrease computational complexity of checking (1),

it was suggested in [5] to extract pairwise MCPs

PL
1 (yL1 ), . . . , PL

nL
(yLnL

) for disjunctive terms of Ak(xk) =
Ak,1(xk,1) ∨ · · · ∨Ak,mk

(xk,mk
).

Simultaneously new unary predicates pLi (y
L
i ) and new vari-

ables yLi for lists of initial variables yLi defined by equalities

pLi (y
L
i ) ⇔ PL

i (yLi ) are introduced.

Repeat this procedure with formulas P l
1(y

l
1), . . . , P l

nl
(ylnl

)

for l = L, . . . , 2 and receive P l−1
1 (yl−1

1 ), . . . , P l−1
nl−1

(yl−1
nl

).

Every occurrence of P l
i (y

l
i) in P l′

j′ (y
l′
j′) (l′ > l) and in

Ak,j(xk,j) replace by pli(y
l
i).

Let AL
k,j(x

L
k,j) be the results of substitutions of pli(y

l
i) in-

stead of P l
i (y

l
i) into Ak,j(xk,j). Level description of formulas

Ak,1(xk,1), . . . , Ak,mk
(xk,mk

) has the form (2) [5].
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Fig. 5. Process of level recognition.
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AL
k,j(x

L
k,j) (j = 1, . . . ,mk)

p11(y
1
1) ⇔ P 1

1 (y
1
1)

...

p1n1
(y1n1

) ⇔ P 1
n1
(y1n1

)
...

pli(y
l
i) ⇔ P l

i (y
l
i)

...

pLnL
(yLnL

) ⇔ PL
nL

(yLnL
)

. (2)

C. Level recognition

The process of level recognition is presented in Figure 5.

(This figure was published in the author’s paper [5].)

Here we can see why the author uses the term “cell” instead

of the term “neuron”. The contents of cells in Figure 5 are el-

ementary conjunctions of predicate formulas. Every condition

which is checked in a rhomb of this scheme has the same

form as the formula (1). But its right-hand part is essentially

shorter than that in (1). That is why computational complexity

essentially decreases.

But, nevertheless, the problem remains NP-complete (NP-

hard if we need to find values of arguments in (1)).

VI. DISCUSSION

It is well known that every information may be represented 
in the form of a binary string.

The main part of this paper is devoted to the recognition 
problem of objects described by binary strings. It was shown 
that computational complexity of recognition of an object with 
description presented in TS is O(n2), where n is the number 
of features (i.e., the length of description).

In section 6, it was mentioned (with reference to [5]) that

computational complexity of recognizing a complex structured

object is an NP-complete problem.

Is it a fraud? Or it was proved that P=NP?

Computational complexity is a function of the input data

length.

Let ω = {ω1, . . . , ωt} and be characterized by predicates

p1, . . . , pn. The length of a binary string which simulates an

elementary conjunction of predicate formulas with t variables

and containing an m-ary predicate is O(tm

It corresponds to the the estimate O(tm·|A|·|S|) given in [7]

for the number of propositional variables modelling predicate 
calculus formulas in a finite domain.

As polynomial of the exponent gives the exponent, we have 
not prove that P=NP. And it was not a fraud that the same 
problem with different representations of input data belongs 
to essentially different complexity classes.
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