
Algorithm for Extraction Common Properties of
Objects Described in the Predicate Calculus Language

with Several Predicate Symbols

Abstract When solving artificial intelligence problems
connected with the study of complex structured objects, a
convenient tool for describing such objects is the language of
predicate calculus. The paper presents two algorithms for the
extraction of common properties of objects described in the
predicate calculus language with predicate symbols. The first of
the algorithms extracts maximal common subformulas for
elementary conjunctions containing 2 predicate symbols. The
second algorithm extracts maximal common subformulas for
elementary conjunctions with several predicate symbols.
Estimates of their time complexity are given for both algorithms.
Both algorithms are implemented in Python.

Keywords Predicate formulas, isomorphism of predicate
formulas, complex structured object, maximal common
subformula.

I. INTRODUCTION
In artificial intelligence problems, connected with the

study of complex structured objects, described by the
properties of their elements and the relationships between
these elements, it is convenient to use predicate calculus
formulas. To describe the classes of such objects, it is
necessary to highlight their common properties.

An algorithm for extraction maximal common property of
two objects described by means of a single predicate is
proposed in [1]. An estimate of the computational complexity
is proved for this algorithm.

Presented here two algorithms aim to extract maximal
common subformulas for elementary conjunctions, which
contain two and several different predicate symbols,
respectively.

II. WHY NECESSARY DEFINITIONS
Definition 1 [2]. Two elementary conjunctions of atomic

formulas of predicate calculus and
are called isomorphic

if there is such an elementary conjunction and
substitutions of arguments and of
formulas and accordingly,
instead of all occurrences of variables of the
formula , that the results of these substitutions

and coincide up to the order of
literals with the formulas and ,
respectively.

The resulting substitutions and
are called unifiers of formulas

and with the formula
respectively.

The formula is below referred to as the MCF
(Maximum Common sub-Formula).

Definition 2 [1]. Two substitutions are called
contradictory if two different constants and are found
for the same variable , i.e., , or for different
variables and , the same constant is found, i.e.,

.
Definition 3 [1]. Let and be

two elementary conjunctions of predicate formulas, with
containing only variables as arguments.

Substitution , where is a list of some variables
from , is a list of some different constants from

, is called a partial unifier of the formulas
and if the result of applying this

substitution to the formula contains a
subformula that coincides up to the order of literals with some
subformula . Below all unifiers will be partial.

Definition 4 [3]. An elementary conjunction that does not
contain constants is called a common property of two objects
if it is isomorphic to some subformulas of each of the
descriptions of these objects.

Definition 5 [3]. An elementary conjunction that does not
contain constants is called a maximum common property
(MCP) of two objects if it is their common property with the
largest number of literals.

For further description of the algorithms some notations
will be required.

Notation 1. A number of substitutions in the unifier is
called an unifier length and is denoted by .

Notation 2. is a list in ascending order of unifier
lengths, containing pairs for all MCF of
subformulas and their unifier with the
corresponding subformulas of formula .

Note that when defining the formula , it is always
possible to organize the numbering of these variables in the
list of variables so that all substitutions in the unifier
have the form for all variables included in the
MCF . Therefore, the unifier MCF with
will not be written out below.

Notation 3. – is a list in ascending order of unifier
lengths, containing pairs for all MCF

Kosovskaya Tatiana
St Petersburg University

St. Petersburg, Russia
e-mail: kosovtm@gmail.com

Zhou Juan
St Petersburg University

St. Petersburg, Russia
e-mail: st103098@student.spbu.ru

https://doi.org/10.62343/csit.2024.9

31

of subformulas and their
unifier with the corresponding subformulas of formula

.
Notation 4. – is a resulting list in ascending order of

unifier lengths, containing pairs for all MCF
of subformulas and their unifier with the
corresponding subformulas of formula .

III. ALGORITHM MCF2 FOR EXTRACTING
COMMON PROPERTIES OF OBJECTS

DESCRIBED IN THE PREDICATE CALCULUS
LANGUAGE WITH TWO PREDICATE SYMBOLS

Let a pair of elementary conjunctions of atomic predicate
formulas and with predicate
symbols and constants and as
arguments be given1. The names of all arguments in each
literal are different.

The following algorithm MCF2 is proposed to extract the
maximal elementary conjunction

for which and
have subformulas isomorphic to .
1. Create 2 pairs of maximal subformulas from

and , containing only a
single predicate symbol: - with
predicate and - with predicate 2.
That is, ,

.
2. Extract using the algorithm MCF1 for a pair of

formulas . Do the same with
and obtain the list .

3. In a nested loop over the lists and , check the unifiers
and for inconsistency.

If the unifiers are consistent, unify them and connect the
current common subformulas with the sign . The obtained
formula with two predicate symbols and ,
which defines the MCF of and

and their unifiers, is added to .
If the unifiers are inconsistent, then go to the next pair of pairs
in the lists and , i.e., go to the next step of the loop.

A block diagram of the algorithm MCF2 is shown in Fig. 1.

IV. ABOUT THE ALGORITHM MCF2
COMPLEXITY

The number of steps in items 1-2, the complexity of the
algorithm MCF1 implemented to and , is

1 The names of constants in different formulas may coincide, and
constants with the same names in different formulas may be used as
names of different object elements and stand in different places.

Fig. 1. Algorithm MCF2 block diagram.

, where is maximal number of arguments in these
formulas [1].

The complexity of checking for consistency of with
(item 3) is

, where , are
the numbers of arguments in the formulas , respectively.

The main contribution to the MCF2 algorithm’s
computational complexity estimation comes from the
implementation of item 2, namely, MCF1 implemented
consistently to pairs . Computational
complexity of the algorithm MCF2 is , where is the
maximal number of arguments in subformulas with a single
predicate symbol and is not greater than the number of
arguments in and .

2 Here and are lists of all arguments that are included in
maximal subformulas with predicate . Similarly for the predicate .

32

V. ALGORITHM MCFN FOR EXTRACTING
COMMON PROPERTIES OF OBJECTS

DESCRIBED IN THE PREDICATE CALCULUS
LANGUAGE WITH SEVERAL PREDICATE

SYMBOLS
Let formulas and be

elementary conjunctions of predicate formulas with
predicate symbols , and literals with the same
predicate symbol are consecutive.

Consider that the numbering of literals is ordered so that if
, then the minimum number of arguments for all

occurrences of the predicate in and
 does not exceed the minimum number of

arguments for all occurrences of the predicate in
 and .

For example, if

and , then 3.
Algorithm MCFn is as follows:

1) .
2) Organize the loop by .4

a) For and , generate two
pairs of subformulas
and , containing the single
predicate symbol and , respectively.

b) For pairs of subformulas
 and

 using the algorithm MCF1
extract the lists and .

c) For each of the obtained pairs from , check
with , then with for consistency.
If the unifiers are consistent, then
I. call the algorithm MCF2 for () and

(), get a list of pairs, such as
5;

II. merge and , attach and
. Write the resulting formula

, specifying the
MCF of formulas and

, and their unifiers in .
Otherwise, go to the next step in the cycle.

A block diagram of the algorithm MCFn is shown in Fig. 2.

VI. ABOUT THE ALGORITHM MCFN
COMPLEXITY

The number of steps in items 1-2b is the complexity of MCF1
implemented to pairs and

3 The order of predicate symbols may depend on the specifics of the
initial data. For example, if in each formula there are one or two
occurrences of a predicate symbol containing more than half of all
variables, then by assigning the number 1 to this predicate, we can
find a partial unifier for more than half of the variable values in one
step (in the worst case, in 4 steps).

. It is ,
where are the maximal numbers of arguments in

Fig. 2. Algorithm MCFn block diagram.

subformulas with a single predicate symbol and in
the initial formulas respectively.

In item 2c, the complexity of checking for consistency of
 with , with , is

.
In items 2ci-2cii, the complexity MCF2, is .
The number of executions of MCFn is equal to half the

number of predicate symbols . At the same time, the
number of steps in Items 1-2cii is .

4 If the initial number of predicates is odd, will be increased by
one (), and the elementary conjunctions with the fictive
predicate will be assumed to be empty (,).
5 and only contain those partial unifiers that do not
contradict the unifiers of .

33

Summing up the obtained estimates of the number of steps,
we obtain an estimate of the number of steps of the algorithm
MCFn .

Thus, the main contribution to the MCFn algorithm’s
computational complexity estimation also comes from the
implementation of MCF1, whose computational complexity
is .

VII. CONCLUSION
The paper presents two algorithms MCF2 and MCFn for

extraction maximal common subformulas (up to the precision
of argument names) of two elementary conjunctions. The
implementation was carried out in the Python [4]
programming language.

Extraction of such subformulas is an important actual task
of searching for common properties of complex structured
objects (CSO) described in the predicate calculus language,
when solving such problems as

• level descriptions of classes for significantly
decreasing the computational complexity of CSO
recognition [5,6];

• fuzzy recognition of CSO [7];
• creation of a logic ontology for CSO [8].

ACKNOWLEDGMENT
Kosovskaya T. M. acknowledges Saint-Petersburg State

University for a research project 95438429.
Zhou Juan acknowledges the support of the China

Scholarship Council program (Project ID: 202108620001).

REFERENCES

1. J. Zhou and T. M. Kosovskaya. “Algorithm for extraction
common properties of objects described in the predicate
calculus language with a single predicate symbol", Vestnik of
Saint Petersburg University. Mathematics. Mechanics.
Astronomy, vol. 11 (69), issue 4, 2024. (In print) DOI:
10.21638/spbu01.2024.409

2. T. M. Kosovskaya and D. A. Petrov. “Extraction of a maximal
common sub-formula of predicate formulas for the solving of
some Artificial Intelligence problems", Vestnik of Saint
Petersburg University. Applied Mathematics. Computer
Science. Control Processes, vol. 13, no. 3, pp. 250–263, 2017.
DOI: 10.21638/11701/spbu10.2017.303

3. T. M. Kosovskaya and J. Zhou, “Algorithms of Isomorphism of
Elementary Conjunctions Checking", Pattern Recognition and
Image Analysis, vol. 34, no. 1, pp. 102–109, 2024. DOI:
10.1134/S1054661824010103

4. E. Matthes, Python Crash Course: A Hands-On, Project-
Based Introduction to Programming, 3rd Edition. No Starch
Press, San Francisco, 2023.

5. T. Kosovskaya, Predicate Calculus as a Tool for AI
Problems Solution: Algorithms and Their Complexity.
Chapter 3 in Intelligent System. Open access peer-reviewed
Edited volume. Edited by Chatchawal Wongchoosuk
Kasetsart University, pp. 1 – 20, 2018. [Online]. Available:
https://www.intechopen.com/chapters/58698

6. T. M. Kossovskaya, “Level descriptions of classes for
decreasing step number of pattern recognition problem solving
described by predicate calculus formulas", Vestnik of Saint
Petersburg University. Applied Mathematics. Computer
Science. Control Processes, vol. 10, no. 2, pp. 62–70, 2008.

7. T. Kosovskaya, “Fuzzy Recognition by Logic-Predicate
Network", Advances in Science, Technology and Engineering

Systems Journal, vol. 5, no. 4, pp. 686–699, 2020.
https://doi.org/10.25046/aj050482

8. T. M. Kosovskaya and N. N. Kosovskii, “Extraction of common
properties of objects for creation of a logic ontology", Vestnik of
Saint Petersburg University. Applied Mathematics. Computer
Science. Control Processes, vol. 18, no. 1, pp. 37–51, 2022.
https://doi.org/10.21638/11701/spbu10.2022.103

34

