
Algorithm for Extraction Common Properties of 
Objects Described in the Predicate Calculus Language 

with Several Predicate Symbols 

Abstract When solving artificial intelligence problems 
connected with the study of complex structured objects, a 
convenient tool for describing such objects is the language of 
predicate calculus. The paper presents two algorithms for the 
extraction of common properties of objects described in the 
predicate calculus language with predicate symbols. The first of 
the algorithms extracts maximal common subformulas for 
elementary conjunctions containing 2 predicate symbols. The 
second algorithm extracts maximal common subformulas for 
elementary conjunctions with several predicate symbols. 
Estimates of their time complexity are given for both algorithms. 
Both algorithms are implemented in Python.

Keywords Predicate formulas, isomorphism of predicate 
formulas, complex structured object, maximal common 
subformula.

I. INTRODUCTION
In artificial intelligence problems, connected with the 

study of complex structured objects, described by the 
properties of their elements and the relationships between 
these elements, it is convenient to use predicate calculus 
formulas. To describe the classes of such objects, it is 
necessary to highlight their common properties.

An algorithm for extraction maximal common property of 
two objects described by means of a single predicate is 
proposed in [1]. An estimate of the computational complexity 
is proved for this algorithm.

Presented here two algorithms aim to extract maximal 
common subformulas for elementary conjunctions, which 
contain two and several different predicate symbols, 
respectively.

II. WHY NECESSARY DEFINITIONS
Definition 1 [2]. Two elementary conjunctions of atomic 

formulas of predicate calculus and 
are called isomorphic 

if there is such an elementary conjunction and
substitutions of arguments and of
formulas and accordingly, 
instead of all occurrences of variables of the 
formula , that the results of these substitutions 

and coincide up to the order of
literals with the formulas and ,
respectively.

The resulting substitutions and
are called unifiers of formulas

and with the formula 
respectively.

The formula is below referred to as the MCF
(Maximum Common sub-Formula).

Definition 2 [1]. Two substitutions are called 
contradictory if two different constants and are found 
for the same variable , i.e., , or for different 
variables and , the same constant is found, i.e., 

.
Definition 3 [1]. Let and be 

two elementary conjunctions of predicate formulas, with 
containing only variables as arguments.

Substitution , where is a list of some variables 
from , is a list of some different constants from 

, is called a partial unifier of the formulas 
and if the result of applying this 

substitution to the formula contains a 
subformula that coincides up to the order of literals with some 
subformula . Below all unifiers will be partial.

Definition 4 [3]. An elementary conjunction that does not 
contain constants is called a common property of two objects 
if it is isomorphic to some subformulas of each of the 
descriptions of these objects.

Definition 5 [3]. An elementary conjunction that does not 
contain constants is called a maximum common property 
(MCP) of two objects if it is their common property with the 
largest number of literals.

For further description of the algorithms some notations 
will be required.

Notation 1. A number of substitutions in the unifier is 
called an unifier length and is denoted by .

Notation 2. is a list in ascending order of unifier
lengths, containing pairs for all MCF of
subformulas and their unifier with the
corresponding subformulas of formula .

Note that when defining the formula , it is always
possible to organize the numbering of these variables in the 
list of variables so that all substitutions in the unifier 
have the form for all variables included in the
MCF . Therefore, the unifier MCF with 
will not be written out below.

Notation 3. – is a list in ascending order of unifier
lengths, containing pairs for all MCF
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of subformulas and their
unifier with the corresponding subformulas of formula

.
Notation 4. – is a resulting list in ascending order of 

unifier lengths, containing pairs for all MCF 
of subformulas and their unifier with the 
corresponding subformulas of formula .

III. ALGORITHM MCF2 FOR EXTRACTING
COMMON PROPERTIES OF OBJECTS

DESCRIBED IN THE PREDICATE CALCULUS
LANGUAGE WITH TWO PREDICATE SYMBOLS

Let a pair of elementary conjunctions of atomic predicate 
formulas and with predicate
symbols and constants and as
arguments be given1. The names of all arguments in each 
literal are different.

The following algorithm MCF2 is proposed to extract the 
maximal elementary conjunction 

for which and 
have subformulas isomorphic to .
1. Create 2 pairs of maximal subformulas from

and , containing only a
single predicate symbol: - with
predicate and - with predicate 2.
That is, ,

.
2. Extract using the algorithm MCF1 for a pair of

formulas . Do the same with
and obtain the list .

3. In a nested loop over the lists and , check the unifiers
and for inconsistency.

If the unifiers are consistent, unify them and connect the
current common subformulas with the sign . The obtained
formula with two predicate symbols and ,
which defines the MCF of and

and their unifiers, is added to .
If the unifiers are inconsistent, then go to the next pair of pairs
in the lists and , i.e., go to the next step of the loop.

A block diagram of the algorithm MCF2 is shown in Fig. 1.

IV. ABOUT THE ALGORITHM MCF2
COMPLEXITY

The number of steps in items 1-2, the complexity of the 
algorithm MCF1 implemented to and , is

1 The names of constants in different formulas may coincide, and 
constants with the same names in different formulas may be used as 
names of different object elements and stand in different places.

Fig. 1. Algorithm MCF2 block diagram.

, where is maximal number of arguments in these
formulas [1].

The complexity of checking for consistency of with
(item 3) is 

, where , are
the numbers of arguments in the formulas , respectively.

The main contribution to the MCF2 algorithm’s 
computational complexity estimation comes from the 
implementation of item 2, namely, MCF1 implemented 
consistently to pairs . Computational
complexity of the algorithm MCF2 is , where is the 
maximal number of arguments in subformulas with a single 
predicate symbol and is not greater than the number of 
arguments in and .

2 Here and are lists of all arguments that are included in
maximal subformulas with predicate . Similarly for the predicate .
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V. ALGORITHM MCFN FOR EXTRACTING 
COMMON PROPERTIES OF OBJECTS 

DESCRIBED IN THE PREDICATE CALCULUS 
LANGUAGE WITH SEVERAL PREDICATE 

SYMBOLS 
Let formulas  and  be 

elementary conjunctions of predicate formulas with  
predicate symbols , and literals with the same 
predicate symbol are consecutive. 

Consider that the numbering of literals is ordered so that if 
, then the minimum number of arguments for all 

occurrences of the predicate  in  and 
 does not exceed the minimum number of 

arguments for all occurrences of the predicate  in 
 and . 

For example, if 
 

 

and , then 3. 
Algorithm MCFn is as follows: 

1) . 
2) Organize the loop by .4 

a) For  and , generate two 
pairs of subformulas  
and , containing the single 
predicate symbol  and , respectively. 

b) For pairs of subformulas 
 and 

 using the algorithm MCF1 
extract the lists  and . 

c) For each of the obtained pairs from , check  
with , then  with  for consistency. 
If the unifiers are consistent, then 
I. call the algorithm MCF2 for ( ) and 

( ), get a list  of pairs, such as 
5; 

II. merge  and , attach  and 
. Write the resulting formula 

, specifying the 
MCF of formulas  and 

, and their unifiers in . 
Otherwise, go to the next step in the cycle. 

A block diagram of the algorithm MCFn is shown in Fig. 2. 

VI. ABOUT THE ALGORITHM MCFN 
COMPLEXITY 

The number of steps in items 1-2b is the complexity of MCF1 
implemented to pairs  and 

 
3 The order of predicate symbols may depend on the specifics of the 
initial data. For example, if in each formula there are one or two 
occurrences of a predicate symbol containing more than half of all 
variables, then by assigning the number 1 to this predicate, we can 
find a partial unifier for more than half of the variable values in one 
step (in the worst case, in 4 steps). 

. It is , 
where  are the maximal numbers of arguments in 

 

 
 

Fig. 2. Algorithm MCFn block diagram. 
 
subformulas with a single predicate symbol  and in 
the initial formulas respectively. 

In item 2c, the complexity of checking for consistency of 
 with ,  with , is 

. 
In items 2ci-2cii, the complexity MCF2, is . 
The number of executions of MCFn is equal to half the 

number of predicate symbols . At the same time, the 
number of steps in Items 1-2cii is . 

4 If the initial number of predicates  is odd,  will be increased by 
one ( ), and the elementary conjunctions with the fictive 
predicate will be assumed to be empty ( , ). 
5   and  only contain those partial unifiers that do not 
contradict the unifiers of . 
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Summing up the obtained estimates of the number of steps, 
we obtain an estimate of the number of steps of the algorithm 
MCFn .

Thus, the main contribution to the MCFn algorithm’s 
computational complexity estimation also comes from the 
implementation of MCF1, whose computational complexity 
is .

VII. CONCLUSION
The paper presents two algorithms MCF2 and MCFn for

extraction maximal common subformulas (up to the precision 
of argument names) of two elementary conjunctions. The 
implementation was carried out in the Python [4]
programming language.

Extraction of such subformulas is an important actual task 
of searching for common properties of complex structured 
objects (CSO) described in the predicate calculus language, 
when solving such problems as

• level descriptions of classes for significantly
decreasing the computational complexity of CSO
recognition [5,6];

• fuzzy recognition of CSO [7];
• creation of a logic ontology for CSO [8].
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